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Recap: Softmax single layer network
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Single layer network

Single-layer network, 1 output, 2 inputs
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Geometric interpretation

Single-layer network, 1 output, 2 inputs
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Single layer network

Single-layer network, 3 outputs, 2 inputs
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Example data (three classes)
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Classification regions with single-layer network
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Plot of Decision regions

Single-layer networks are limited to linear classification boundaries
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Single layer network trained on MNIST Digits

0
10 Outputs

784 Inputs

784x10 weight matrix
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28x28

Output weights define a “template” for each class
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Hinton Diagrams

Visualise the weights for class k

. . . .
400 (20x20) inputs
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Hinton diagram for single layer network trained on MNIST

Weights for each class act as a “discriminative template”
Inner product of class weights and input to measure closeness to each template
Classify to the closest template (maximum value output)
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Multi-Layer Networks
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From templates to features

Good classification needs to cope with the variability of real data: scale, skew,
rotation, translation, ....
Very difficult to do with a single template per class
Could have multiple templates per task... this will work, but we can do better

Use features rather than templates

(images from: Nielsen, chapter 1)
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Incorporating features in neural network architecture

Layered processing: inputs - features - classification

0 1 2 3 4 5 6 7 8 9

. . . .

. . . .. . . .

How to obtain features? - learning!
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Incorporating features in neural network architecture
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Multi-layer network
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Multi-layer network for MNIST

(image from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chap1.html)
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Training multi-layer networks: Credit assignment

Hidden units make training the weights more complicated, since the hidden units
affect the error function indirectly via all the outputs

The credit assignment problem

what is the “error” of a hidden unit?
how important is input-hidden weight w

(1)
ji to output unit k?

what is the gradient of the error with respect to each weight?

Solution: back-propagation of error (backprop)

Backprop enables the gradients to be computed. These gradients are used by
gradient descent to train the weights.
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Training output weights
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Training MLPs: Error function and required gradients

Cross-entropy error function:

En = −
C∑
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tnk ln ynk
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∂w
(2)
kj

∂En

∂w
(1)
ji

∂En

∂b
(2)
k

∂En

∂b
(1)
j

Gradient for hidden-to-output weights similar to single-layer network:
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Back-propagation of error: hidden unit error signal
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Training MLPs: Input-to-hidden weights
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Training MLPs: Gradients
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Exercise: write down expressions for the gradients w.r.t. the biases
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Back-propagation of error: hidden unit error signal
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Hidden units
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Back-propagation of error

The back-propagation of error algorithm is summarised as follows:

1 Apply an input vectors from the training set, x, to the network and forward
propagate to obtain the output vector y

2 Using the target vector t compute the error E n

3 Evaluate the error gradients g
(2)
k for each output unit

4 Evaluate the error gradients g
(1)
j for each hidden unit using back-propagation of error

5 Evaluate the derivatives for each training pattern

Back-propagation can be extended to multiple hidden layers, in each case
computing the g (`)s for the current layer as a weighted sum of the g (`+1)s of the
next layer
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Training with multiple hidden layers
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Are there alternatives
to Sigmoid Hidden Units?

MLP Lecture 3 Deep Neural Networks (1) 26



Sigmoid function
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Logistic sigmoid activation function   g(a) = 1/(1+exp(−a))
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Sigmoid Hidden Units

Compress unbounded inputs to (0,1), saturating high magnitudes to 1

Interpretable as the probability of a feature defined by their weight vector

Interpretable as the (normalised) firing rate of a neuron

However...

Saturation causes gradients to approach 0: If the output of a sigmoid unit is h,
then then gradient is h(1 − h) which approaches 0 as h saturates to 0 or 1 - and
hence the gradients it multiplies into approach 0. Very small gradients result in
very small parameter changes, so learning becomes very slow

Outputs are not centred at 0: The output of a sigmoid layer will have mean> 0.
This is numerically undesirable.
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tanh

tanh(x) =
ex − e−x

ex + e−x

sigmoid(x) =
1 + tanh(x/2)

2

Derivative:

d

dx
tanh(x) = 1 − tanh2(x)
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tanh hidden units

tanh has same shape as sigmoid but has
output range ±1

Results about approximation capability
of sigmoid networks also apply to tanh
networks

Possible reason to prefer tanh over
sigmoid: allowing units to be positive or
negative allows gradient for weights into
a hidden unit to have a different sign

Saturation still a problem
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Rectified Linear Unit – ReLU

relu(x) = max(0, x)

Derivative:
d

dx
relu(x) =

{
0 if x ≤ 0

1 if x > 0
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ReLU hidden units

Similar approximation results to tanh and sigmoid hidden units

Empirical results for speech and vision show consistent improvements using relu
over sigmoid or tanh

Unlike tanh or sigmoid there is no positive saturation – saturation results in very
small derivatives (and hence slower learning)

Negative input to relu results in zero gradient (and hence no learning)

Relu is computationally efficient: max(0, x)

Relu units can “die” (i.e. respond with 0 to everything)

Relu units can be very sensitive to the learning rate
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Summary

Understanding what single-layer networks compute

How multi-layer networks allow feature computation

Training multi-layer networks using back-propagation of error

Tanh and ReLU activation functions

Multi-layer networks are also referred to as deep neural networks or
multi-layer perceptrons

Reading:

Nielsen, chapter 2
Goodfellow, sections 6.3, 6.4, 6.5
Bishop, sections 3.1, 3.2, and chapter 4
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