
Deep Neural Networks (1)
Hidden layers; Back-propagation

Steve Renals

Machine Learning Practical — MLP Lecture 3
4 October 2017 / 9 October 2017

MLP Lecture 3 Deep Neural Networks (1) 1

Recap: Softmax single layer network

+ + +

class 1 class 2 class 3

softmax

inputs

MLP Lecture 3 Deep Neural Networks (1) 2

Single layer network

Single-layer network, 1 output, 2 inputs

+

x1 x2

MLP Lecture 3 Deep Neural Networks (1) 3

Geometric interpretation

Single-layer network, 1 output, 2 inputs

w

� b

||w||

x1

x2

y(w;x) = 0

Bishop, sec 3.1 MLP Lecture 3 Deep Neural Networks (1) 4

Single layer network

Single-layer network, 3 outputs, 2 inputs

+

x1 x2

++

MLP Lecture 3 Deep Neural Networks (1) 5

Example data (three classes)

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5
Data

MLP Lecture 3 Deep Neural Networks (1) 6

Classification regions with single-layer network

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5
Plot of Decision regions

Single-layer networks are limited to linear classification boundaries

MLP Lecture 3 Deep Neural Networks (1) 7

Single layer network trained on MNIST Digits

0
10 Outputs

784 Inputs

784x10 weight matrix

1 2 3 4 5 6 7 8 9

. . . .

28x28

Output weights define a “template” for each class

MLP Lecture 3 Deep Neural Networks (1) 8

Hinton Diagrams

Visualise the weights for class k

. . . .
400 (20x20) inputs

MLP Lecture 3 Deep Neural Networks (1) 9

Hinton diagram for single layer network trained on MNIST

Weights for each class act as a “discriminative template”
Inner product of class weights and input to measure closeness to each template
Classify to the closest template (maximum value output)

0 1

2 3

MLP Lecture 3 Deep Neural Networks (1) 10

Multi-Layer Networks

MLP Lecture 3 Deep Neural Networks (1) 11

From templates to features

Good classification needs to cope with the variability of real data: scale, skew,
rotation, translation,
Very difficult to do with a single template per class
Could have multiple templates per task... this will work, but we can do better

Use features rather than templates

(images from: Nielsen, chapter 1)
MLP Lecture 3 Deep Neural Networks (1) 12

Incorporating features in neural network architecture

Layered processing: inputs - features - classification

0 1 2 3 4 5 6 7 8 9

. . . .

.

How to obtain features? - learning!

MLP Lecture 3 Deep Neural Networks (1) 13

Incorporating features in neural network architecture

0 1 2 3 4 5 6 7 8 9

. . . .

.

MLP Lecture 3 Deep Neural Networks (1) 14

Multi-layer network

. . . .

. . . . g ggg

. . . . + +++

+ + + +. . . .

f f f f. . . .
Softmax

Sigmoid

yk

xi

a
(1)
j

a
(2)
k

w
(2)
kj

w
(1)
ji

Outputs

Inputs

Hidden layerh
(1)
j

b
(2)
k

b
(1)
j

yk = softmax

(
H∑

r=1

w
(2)
kr h

(1)
r + bk

)
h
(1)
j = sigmoid

(
d∑

s=1

w
(1)
js xs + bj

)

MLP Lecture 3 Deep Neural Networks (1) 15

Multi-layer network for MNIST

(image from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chap1.html)
MLP Lecture 3 Deep Neural Networks (1) 16

http://neuralnetworksanddeeplearning.com/chap1.html

Training multi-layer networks: Credit assignment

Hidden units make training the weights more complicated, since the hidden units
affect the error function indirectly via all the outputs

The credit assignment problem

what is the “error” of a hidden unit?
how important is input-hidden weight w

(1)
ji to output unit k?

what is the gradient of the error with respect to each weight?

Solution: back-propagation of error (backprop)

Backprop enables the gradients to be computed. These gradients are used by
gradient descent to train the weights.

MLP Lecture 3 Deep Neural Networks (1) 17

Training output weights

Outputs

Hidden units

xi

w(2)
1 j w(2)

ℓ j

w(1)
ji

yKy�y1

w(2)
K j

hj

g
(2)
K

g
(2)
`g

(2)
1

@En

@w
(2)
kj

= g
(2)
k h

(1)
j

MLP Lecture 3 Deep Neural Networks (1) 18

Training MLPs: Error function and required gradients

Cross-entropy error function:

En = −
C∑

k=1

tnk ln ynk

Required gradients: ∂En

∂w
(2)
kj

∂En

∂w
(1)
ji

∂En

∂b
(2)
k

∂En

∂b
(1)
j

Gradient for hidden-to-output weights similar to single-layer network:

∂En

∂w
(2)
kj

=
∂En

∂a
(2)
k

· ∂a
(2)
k

∂wkj
=

(
C∑

c=1

∂En

∂yc
· ∂yc

∂a
(2)
k

)
· ∂a

(2)
k

∂wkj

= (yk − tk)︸ ︷︷ ︸
g
(2)
k

h
(1)
j

MLP Lecture 3 Deep Neural Networks (1) 19

Back-propagation of error: hidden unit error signal

Outputs

Hidden units

xi

w(2)
1 j w(2)

ℓ j

w(1)
ji

yKy�y1

w(2)
K j

hj

g
(1)
j =

 X

`

g
(2)
l w`j

!
hj(1 � hj)

g
(2)
1 g

(2)
` g

(2)
K

@En

@w
(1)
ji

= g
(1)
j xi

MLP Lecture 3 Deep Neural Networks (1) 20

Training MLPs: Input-to-hidden weights

∂En

∂w
(1)
ji

=
∂En

∂a
(1)
j︸ ︷︷ ︸

g
(1)
j

·
∂a

(1)
j

∂w
(1)
ji︸ ︷︷ ︸
xi

To compute g
(1)
j = ∂En/∂a

(1)
j , the error signal for hidden unit j , we must sum over all

the output units’ contributions to g
(1)
j :

g
(1)
j =

K∑

c=1

∂En

∂a
(2)
c

· ∂a
(2)
c

∂a
(1)
j

=




K∑

c=1

g
(2)
c · ∂a

(2)
c

∂h
(1)
j


 ·

∂h
(1)
j

∂a
(1)
j

=

(
K∑

c=1

g
(2)
c w

(2)
cj

)
h
(1)
j (1 − h

(1)
j)

MLP Lecture 3 Deep Neural Networks (1) 21

Training MLPs: Gradients

∂En

∂w
(2)
kj

= (yk − tk)︸ ︷︷ ︸
g
(2)
k

·h(1)j

∂En

∂w
(1)
ji

=

(
k∑

c=1

g
(2)
c w

(2)
cj

)
h
(1)
j (1 − h

(1)
j)

︸ ︷︷ ︸
g
(1)
j

·xi

Exercise: write down expressions for the gradients w.r.t. the biases

∂En

∂b
(2)
k

∂En

∂b
(1)
j

MLP Lecture 3 Deep Neural Networks (1) 22

Back-propagation of error: hidden unit error signal

Outputs

Hidden units

xi

w(2)
1 j w(2)

ℓ j

w(1)
ji

yKy�y1

w(2)
K j

hj

g
(1)
j =

 X

`

g
(2)
l w`j

!
hj(1 � hj)

g
(2)
1 g

(2)
` g

(2)
K

@En

@w
(1)
ji

= g
(1)
j xi

MLP Lecture 3 Deep Neural Networks (1) 23

Back-propagation of error

The back-propagation of error algorithm is summarised as follows:

1 Apply an input vectors from the training set, x, to the network and forward
propagate to obtain the output vector y

2 Using the target vector t compute the error E n

3 Evaluate the error gradients g
(2)
k for each output unit

4 Evaluate the error gradients g
(1)
j for each hidden unit using back-propagation of error

5 Evaluate the derivatives for each training pattern

Back-propagation can be extended to multiple hidden layers, in each case
computing the g (`)s for the current layer as a weighted sum of the g (`+1)s of the
next layer

MLP Lecture 3 Deep Neural Networks (1) 24

Training with multiple hidden layers

Outputs

g
(3)
1 g

(3)
` g

(3)
K

Hidden

Hidden

y1 y` yK

w
(3)
1k

w
(3)
`k

w
(3)
Kk

w
(2)
1j

w
(2)
kj

w
(2)
Hj

h
(2)
Hh

(2)
k

h
(2)
1

g
(2)
1 g

(2)
k

g
(2)
H

h
(1)
j

w
(1)
ji

g
(1)
j

xi
Inputs

g
(2)
k =

 X

m

g(3)
m wmk

!
h

(2)
k (1 � h

(2)
k)

@En

@w
(2)
kj

= g
(2)
k h

(1)
j

MLP Lecture 3 Deep Neural Networks (1) 25

Are there alternatives
to Sigmoid Hidden Units?

MLP Lecture 3 Deep Neural Networks (1) 26

Sigmoid function

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

g(
a)

Logistic sigmoid activation function g(a) = 1/(1+exp(−a))

MLP Lecture 3 Deep Neural Networks (1) 27

Sigmoid Hidden Units

Compress unbounded inputs to (0,1), saturating high magnitudes to 1

Interpretable as the probability of a feature defined by their weight vector

Interpretable as the (normalised) firing rate of a neuron

However...

Saturation causes gradients to approach 0: If the output of a sigmoid unit is h,
then then gradient is h(1 − h) which approaches 0 as h saturates to 0 or 1 - and
hence the gradients it multiplies into approach 0. Very small gradients result in
very small parameter changes, so learning becomes very slow

Outputs are not centred at 0: The output of a sigmoid layer will have mean> 0.
This is numerically undesirable.

MLP Lecture 3 Deep Neural Networks (1) 28

tanh

tanh(x) =
ex − e−x

ex + e−x

sigmoid(x) =
1 + tanh(x/2)

2

Derivative:

d

dx
tanh(x) = 1 − tanh2(x)

MLP Lecture 3 Deep Neural Networks (1) 29

tanh hidden units

tanh has same shape as sigmoid but has
output range ±1

Results about approximation capability
of sigmoid networks also apply to tanh
networks

Possible reason to prefer tanh over
sigmoid: allowing units to be positive or
negative allows gradient for weights into
a hidden unit to have a different sign

Saturation still a problem

Hidden

Hidden

h
(2)
H

h
(2)
kh

(2)
1

�
(2)
k

h
(1)
jh

(1)
1

h
(1)
H

MLP Lecture 3 Deep Neural Networks (1) 30

Rectified Linear Unit – ReLU

relu(x) = max(0, x)

Derivative:
d

dx
relu(x) =

{
0 if x ≤ 0

1 if x > 0

MLP Lecture 3 Deep Neural Networks (1) 31

ReLU hidden units

Similar approximation results to tanh and sigmoid hidden units

Empirical results for speech and vision show consistent improvements using relu
over sigmoid or tanh

Unlike tanh or sigmoid there is no positive saturation – saturation results in very
small derivatives (and hence slower learning)

Negative input to relu results in zero gradient (and hence no learning)

Relu is computationally efficient: max(0, x)

Relu units can “die” (i.e. respond with 0 to everything)

Relu units can be very sensitive to the learning rate

MLP Lecture 3 Deep Neural Networks (1) 32

Summary

Understanding what single-layer networks compute

How multi-layer networks allow feature computation

Training multi-layer networks using back-propagation of error

Tanh and ReLU activation functions

Multi-layer networks are also referred to as deep neural networks or
multi-layer perceptrons

Reading:

Nielsen, chapter 2
Goodfellow, sections 6.3, 6.4, 6.5
Bishop, sections 3.1, 3.2, and chapter 4

MLP Lecture 3 Deep Neural Networks (1) 33

