Single Layer Networks (2)

Stochastic gradient descent; Classification

Steve Renals

Machine Learning Practical — MLP Lecture 2
27 September 2017

MLP Lecture 2 1

Single Layer Networks

MLP Lecture 2 Single Layer Networks (2)

Recap: Gradient descent for a single-layer network

N
1
Awgy = N E (y5 —ty)z}
n=1

MLP Lecture 2 3

Stochastic Gradient Descent (SGD)

@ Training by batch gradient descent is very slow for large
training data sets
e The algorithm sums the gradients over the entire training set
before making an update
o Since the update steps () are small many updates are needed

@ Solution: Stochastic Gradient Descent (SGD)

@ In SGD the true gradient OE /Owy; (obtained by averaging
over the entire training dataset) is approximated by the
gradient for a point OE" /0wy,

@ The weights are updated after each training example rather
than after the batch of training examples

@ Inaccuracies in the gradient estimates are washed away by the
many approximations

e To prevent multiple similar data points (all with similar
gradient approximation inaccuracies) appearing in succession,
present the training set in random order

MLP Lecture 2 4

SGD Pseudocode (linear network)

1: procedure SGDTRAINING(X, T, W)
2 initialize W to small random numbers
3 randomize order of training examples in X
4: while not converged do
5: for n< 1, N do
6: for k <+ 1,K do
7 i S0 wiax! + by
8 8k YK — &
9: for i+ 1,d do
10: Wij <= Wij — 1 - 8 - X[
11: end for
12: bk%bk777~g£
13: end for
14: end for

15: end while
16: end procedure

MLP Lecture 2 5

o Batch gradient descent — compute the gradient from the
batch of N training examples

@ Stochastic gradient descent — compute the gradient from 1
training example each time

@ Intermediate — compute the gradient from a minibatch of M
training examples - M > 1, M << N

o Benefits of minibatch:

o Computationally efficient by making best use of vectorisation,
keeping processor pipelines full

o Possibly smoother convergence as the gradient estimates are
less noisy than using a single example each time

MLP Lecture 2 6

Classification

MLP Lecture 2 Single Layer Networks (2)

=
(©]
B
Q]
=
(S
‘0
w0
s
O
=
.20
a
_I
=2,
=
=

Q—ONMI S fre s
OQO—dm IV oo
O~ >H\\ ~ o
O~ ND A <
V=N CFnoe o
O~ OTWVWS thre o
Q—~cx PO MNA T
=N W o0
A~ MMIWVSE —w Jd
O—=CmT NS NI o
O~ T WU -t X
O~ T N9 N -~
Q- InS ke oy
OQ~dmm>\-O ro o
DS — (M J O - O~
R —c% I \0Y % N
D—{ragoaNKS
O—dN TS g O~
O~ I e N
O~ TP O NG &

2

MLP Lecture

Classification and Regression

@ Regression: predict the value of the output given an example
input vector - e.g. what will be tomorrow’s rainfall (in mm)
o Classification: predict the category given an example input
vector — e.g. will it be rainy tomorrow (yes or no)?
o Classification outputs:
o Binary: 1 (yes) or 0 (no)
o Probabilistic: p, 1 — p (for a 2-class problem)
@ One could train a linear single layer network as a classifier:

o Output targets are 1/0 (yes/no)
e At run time if the output y > 0.5 classify as yes, otherwide
classify as no

@ This will work, but we can do better....

@ OQutput activation functions to constrain the outputs to binary
or probabilistic (logistic / sigmoid)

MLP Lecture 2 9

Two-class classification
@ Output: ¥y

Activation: a

Single-layer network, binary/sigmoid output

1 if a> 0.5
Binary (step function): f(a) = -
v (step ;£ {0 if a< 05
1
Probabilistic (sigmoid function): | f(a) = 1+ exp(—a)

MLP Lecture 2 10

Sigmoid function

Logistic sigmoid activation function g(a) = 1/(1+exp(-a))
1 T T T T T T T T

0.9r 7

0.8 7

0.21 b

0.1 b

MLP Lecture 2 11

Sigmoid single layer networks

@ Binary output: activation is not differentiable. Can use
perceptron learning to train binary output single layer networks

@ Probabilistic output: sigmoid single layer network
(statisticians would call this logistic regression). Let a be the
activation of the single output unit, the value of the weighted
sum of inputs, before the activation function, so:

y=f(a)="f (Zwixi—i—b)

@ Two classes, so single output y, with weights w;

MLP Lecture 2 12

Sigmoid single layer networks

@ Training sigmoid single layer network: Gradient descent
requires OE /Ow; for all weights:

OE" OE"0y" 0a"
ow; Jy" da" Ow;

For a sigmoid:
dy
y="f(a) - ="(a)(1-1(a))
(Show that this is indeed the derivative of a sigmoid.)
@ Therefore gradients of the error w.r.t. weights and bias:
aEn n n n n n
aw; | = " =) f@N)(—f(a") x;
f’(a")

8En n n n n
= ") - F(a")

MLP Lecture 2

Applying gradient descent to a sigmoid single-layer network

5
y"=f (Z wizy + b)
=1

MLP Lecture 2 14

Cross-entropy error function (1)

o If we use a sigmoid single layer network for a two class
problem (C; (target t = 1) and G, (t = 0)), then we can
interpret the output as follows

y~P(G|x)=P(t=1]x)
(1=y)~P(G|x) = P(t=0]x)

@ Combining, and recalling the target is binary
P(t | x, W) =y*-(1-y)*"

This is a Bernoulli distribution. We can write the log
probability:

InP(t|x,W)=tiny+(1—t)In(1—y)

MLP Lecture 2 15

Cross-entropy error function (2)

@ Optimise the weights W to maximise the log probability — or
to minimise the negative log probability.

EM=—(t"Iny" + (1 —t")In(1 — y")) .

This is called the cross-entropy error function
e Gradient descent training requires the derivative OE /Ow;
(where w; connects the ith input to the single output).

OE t 1—-t —(Q-y)t+y(l-t) (yv—1t)

= —— 4 — =
dy y 1l—y y(1—-y) y(1—y)
OE| 9E 9y oa

owi |~ 9y 9a ow;
(y—t)
y(1—-y) y(t=y)

Derivative of the sigmoid y(1 — y) cancels.
Exercise: What is the gradient for the bias (g—g)?

MLP Lecture 2 16

Multi-class networks

e If we have K classes use a “one-from-K" (“one-hot”) output
coding — target of the correct class is 1, all other targets are
zero

@ It is possible to have a multi-class net with sigmoids

class 1 class 2 class 3

MLP Lecture 2

Multi-class networks

e If we have K classes use a “one-hot" (“one-from-N") output
coding — target of the correct class is 1, all other targets are
zero

@ It is possible to have a multi-class net with sigmoids

@ This will work... but we can do better

@ Using multiple sigmoids for multiple classes means that
>« P(k|x) is not constrained to equal 1 — we want this if we
would like to interpret the outputs of the net as class
probabilities

@ Solution — an activation function with a sum-to-one
constraint: softmax

MLP Lecture 2 18

~ exp(ak)
VK=K
Zj:l exp(a;)

d
ay = § Wi X; + by
i—1

@ This form of activation has the following properties

e Each output will be between 0 and 1
o The denominator ensures that the K outputs will sum to 1

@ Using softmax we can interpret the network output y; as an
estimate of P(k|x")

@ Softmax is the multiclass version of the two-class sigmoid

MLP Lecture 2 19

Softmax — Training (1)

@ We can extend the cross-entropy error function to the
multiclass case

0E"

@
S

OE"
Oby

C
E"=— t] Iny/
k1N Y

k=1

@ Again the overall gradients we need are

ZC: OE Oy
—1 8yc 8ak
ZC: OE dye
o Oy. Oag

MLP Lecture 2

) Bak
Owyi

8ak

b, =

c=

T Ye

C
te

c=1

Ye

Oye
8ak

Softmax — Training (2)

@ Note that the kth activation ax — and hence the weight wy; —

influences the error function through all the output units,
because of the normalising term in the denominator. We have
to take this into account when differentiating.

@ If you do the differentiation you will find:

Oye
6ak
Where dck (0ck = 1 if ¢ = k, 0k = 0 if ¢ # k) is called the
Kronecker delta
@ We can put it all together to find:
6En n n n aEn n n
owg |~ (i — td)xi b |~ (i — t)

= YC(5ck -)/k)

Softmax output with cross-entropy error function results in
gradients the same as for linear outputs with sum-square error!

MLP Lecture 2

Exercises

@ Modify the SGD pseudocode for sigmoid outputs

@ Modify the SGD pseudocode for softmax outputs

© For softmax and cross-entropy error, show that
OE"

— n_)y
Owi (Yk k) i

(use the quotient rule of differentiation, and the fact that
Zle tcyk = yx because of 1-from-K coding of the target
outputs)

MLP Lecture 2 22

o Reading:
o Nielsen chapter 1
o Goodfellow et al sections 5.9, 6.1, 6.2, 8.1

Stochastic gradient descent (SGD) and minibatch
Classification and regression

Sigmoid activation function and cross-entropy
Multiple classes — Softmax

Next lecture: multi-layer networks and hidden units

MLP Lecture 2 23

