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Learning hidden representations

Output
labels

Input
features

Higher layers of deep neural networks are assumed to learn
increasingly more abstract representations of the data

Learning a good hidden representation enables the network to
generalise well to unseen examples
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Training deep neural networks

Hard to find a good minimum when the training criterion is
highly non-convex

Unsupervised pre-training: start the optimisation in a
“good” region of parameter space that describes observed
(unlabelled) samples

Alternatively – consider better methods of supervised
training
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The label problem

Supervised training assumes we have a suitable label for each
training sample

Even if the labels are hand-generated, and “correct”, there are
problems:

Does the labelling describe all the important properties of the
data?
Is it too simple?
Or too difficult to learn from a flat start?
Is it well-defined?

This lecture will explore these issues.

MLP Lecture 11 Multitask learning & related supervised methods 4



The label problem

Supervised training assumes we have a suitable label for each
training sample

Even if the labels are hand-generated, and “correct”, there are
problems:

Does the labelling describe all the important properties of the
data?
Is it too simple?
Or too difficult to learn from a flat start?
Is it well-defined?

This lecture will explore these issues.

MLP Lecture 11 Multitask learning & related supervised methods 4



The label problem

Supervised training assumes we have a suitable label for each
training sample

Even if the labels are hand-generated, and “correct”, there are
problems:

Does the labelling describe all the important properties of the
data?

Is it too simple?
Or too difficult to learn from a flat start?
Is it well-defined?

This lecture will explore these issues.

MLP Lecture 11 Multitask learning & related supervised methods 4



The label problem

Supervised training assumes we have a suitable label for each
training sample

Even if the labels are hand-generated, and “correct”, there are
problems:

Does the labelling describe all the important properties of the
data?
Is it too simple?

Or too difficult to learn from a flat start?
Is it well-defined?

This lecture will explore these issues.

MLP Lecture 11 Multitask learning & related supervised methods 4



The label problem

Supervised training assumes we have a suitable label for each
training sample

Even if the labels are hand-generated, and “correct”, there are
problems:

Does the labelling describe all the important properties of the
data?
Is it too simple?
Or too difficult to learn from a flat start?

Is it well-defined?

This lecture will explore these issues.

MLP Lecture 11 Multitask learning & related supervised methods 4



The label problem

Supervised training assumes we have a suitable label for each
training sample

Even if the labels are hand-generated, and “correct”, there are
problems:

Does the labelling describe all the important properties of the
data?
Is it too simple?
Or too difficult to learn from a flat start?
Is it well-defined?

This lecture will explore these issues.

MLP Lecture 11 Multitask learning & related supervised methods 4



The label problem

Supervised training assumes we have a suitable label for each
training sample

Even if the labels are hand-generated, and “correct”, there are
problems:

Does the labelling describe all the important properties of the
data?
Is it too simple?
Or too difficult to learn from a flat start?
Is it well-defined?

This lecture will explore these issues.

MLP Lecture 11 Multitask learning & related supervised methods 4



The rest of this lecture

Curriculum learning

Multitask learning

Student-teacher models
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Curriculum learning

If a task is difficult, it may be hard to learn from scratch from
a limited quantity of data

Learn how humans do – from simpler examples first, moving
on to more complex examples

Difficulty can be defined with respect to the entropy of the
training data distribution

Easier samples → less noise in the error signals

Greater size of label space → samples harder to classify
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Train on easy data

Easy 
data

Easy 
task

R

MLP Lecture 11 Multitask learning & related supervised methods 7



Then train on harder data

Hard
data

R Hard 
task
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Easy data

Learn approximate decision boundaries...
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Harder data

Then learn fine-grained decision boundaries...
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Examples

Recognising shapes in images (toy example)

Curriculum Learning

In principle one could argue that di�cult examples
can be more informative than easy examples. Here
the di�cult examples are probably not useful because
they confuse the learner rather than help it establish
the right location of the decision surface. This exper-
iment does not involve a curriculum strategy yet, but
it may help to understand why easier examples could
be useful, by avoiding to confuse the learner.

4.2. Introducing Gradually More Di�cult
Examples Speeds-up Online Training

We train a Perceptron from artificially generated data
where the target is y = sign(w0xrelevant) and w is sam-
pled from a Normal(0,1). The training pairs are (x, y)
with x = (xrelevant, xirrelevant), i.e., some of the inputs
are irrelevant, not predictive of the target class. Rel-
evant inputs are sampled from a Uniform(0,1) distri-
bution. Irrelevant inputs can either be set to 0 or to
a Uniform(0,1). The number of irrelevant inputs that
is set to 0 varies randomly (uniformly) from example
to example, and can be used to sort examples from
the easiest (with all irrelevant inputs zeroed out) to
the most di�cult (with none of the irrelevant inputs
zeroed out). Another way to sort examples is by the
margin yw0x, with easiest examples corresponding to
larger values. The learning rate is 1 (it does not matter
since there is no margin and the classifier output does
not depend on the magnitude of w0x but only on its
sign). Initial weights are sampled from a Normal(0,1).
We train the Perceptron with 200 examples (i.e., 200
Perceptron updates) and measure generalization error
at the end. Figure 1 shows average estimated gen-
eralization error measured at the end of training and
averaged across 500 repetitions from di↵erent initial
conditions and di↵erent random sampling of training
examples. We compare a no curriculum setting (ran-
dom ordering), with a curriculum setting in which
examples are ordered by easiness, starting with the
easiest examples, and two easiness criteria (number of
noisy irrelevant inputs, margin yw0x). All error rate
di↵erences between the curriculum strategy and the
no-curriculum are statistically significant (di↵erences
of more than .01 were all statistically significant at 5%
under a t-test).

5. Experiments on shape recognition

The task of interest here is to classify geometri-
cal shapes into 3 classes (rectangle, ellipse, trian-
gle), where the input is a 32⇥32 grey-scale image.
As shown in Figure 2, two di↵erent datasets were
generated: whereas GeomShapes data consist in im-
ages of rectangles, ellipses and triangles, BasicShapes

data only include special cases of the above: squares,

Figure 1. Average error rate of Perceptron, with or with-
out the curriculum. Top: the number of nonzero irrelevant
inputs determines easiness. Bottom: the margin yw0x de-
termines easiness.

circles and equilateral triangles. The di↵erence be-
tween BasicShapes data and GeomShapes data is that
BasicShapes images exhibit less variability in shape.
Other degrees of variability which are present in both
sets are the following: object position, size, orienta-
tion, and also the grey levels of the foreground and
background. Besides, some geometrical constraints are
also added so as to ensure that any shape object fits
entirely within the image, and a minimum size and
minimum contrast (di↵erence in grey levels) between
foreground and background is imposed.

Note that the above “easy distribution” occupying a
very small volume in input space compared to the tar-
get distribution does not contradict condition 4. In-
deed, the non-zero weights (on easy examples) can ini-
tially be very small, so that their final weight in the
target distribution can be very small.

Figure 2. Sample inputs from BasicShapes (top) and
GeomShapes (bottom). Images are shown here with a
higher resolution than the actual dataset (32x32 pixels).

The experiments were carried out on a multi-layer neu-
ral network with 3 hidden layers, trained by stochas-

Increasing the vocabulary of a language model

In automatic speech recognition, modelling phonetic units
with and without context
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Curriculum learning

Multitask learning

Student-teacher models
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Motivation

In machine learning, we normally break a complex problem
down into tractable sub-problems, and learn to solve one
problem at a time.

This potentially ignores rich sources of information found in
the training signals of other tasks

Caruana [1997] proposed multitask learning as a means of
inductive transfer between tasks

This acts as a form of bias, causing the classifier to prefer
hypotheses that explain more than one task, improving
generalisation
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Multitask learning illustrated

Data

Task 1

R1
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Add a related task...

Data

Task 1

Task 2

R1

R2
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Representation may overlap...

Data

Task 1

Task 2

R1

R2
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Share the representation...

Data
R

Task 1

Task 2
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... and update with both error signals

Data
R

Task 1

Task 2
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Examples

Data Primary task Secondary task

Images Face detections Facial landmarks
Audio Speech recognition Speaker recognition
Biological Gene expression ?

Often autoencoding is used as a secondary task.
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Why does it work?

Data amplification to minimise the effect of noise in the
training signals

Better selection of shared hidden representations, reducing
the effect of irrelevent inputs when there is limited data

Eavesdropping on a good underlying representation that may
be easily learned for one task but not for another.

Representation bias – tasks prefer representations that other
tasks also prefer

Using extra features as output may be better than using
them as input
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Taking multitask learning further

We’ve seen that adding incorporating additional label
information in training can result in better hidden
representations

What if we derive different variants of a single labelling and
train in a multitask way?

Motivated by curriculum learning
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Illustration: classifying cats and dogs

Adapting automatic speech recognition to new domains

Illustration: classifying cats and dogs

How could a machine learn to tell them apart?

Monday, 23 January 17
MLP Lecture 11 Multitask learning & related supervised methods 22



Learn useful discriminative features

Adapting automatic speech recognition to new domains

Learn useful discriminative features

Shared “animal” 
representation
ears, fur, tail, legs...

Dog

Cat

Monday, 23 January 17
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Could we learn the right features

Adapting automatic speech recognition to new domains

Could we learn the right features?

Big variation by breed

Big variation by breed

Monday, 23 January 17
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Could we learn the right features

Adapting automatic speech recognition to new domains

Could we learn the right features?

Big variation by breed

Big variation by breed

Hard to learn the most 
relevant features
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Better to discriminate between breeds?

Adapting automatic speech recognition to new domains

Better to discriminate between breeds?

Shared “animal” 
representation

legs, tail, ears...

Monday, 23 January 17
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Better to discriminate between breeds?

Adapting automatic speech recognition to new domains

Better to discriminate between breeds?

Data sparsity
Less useful features?

Monday, 23 January 17
MLP Lecture 11 Multitask learning & related supervised methods 22



Solution: learn both sets of labels

Adapting automatic speech recognition to new domains

Solution: learn both sets of labels

Animal
Features

Shared
Representation

Monday, 23 January 17
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Solution: learn both sets of labels

Adapting automatic speech recognition to new domains

Solution: learn both sets of labels

Animal
Features

Shared
Representation

Breed label

Species label

Monday, 23 January 17
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Example: phone modelling for speech recognition

We want to model phones, the distinct units of speech (48 in
English)

But the placement of a phone in the input acoustic feature
space is highly dependent on the surrounding phones

Usually, DNNs model a phone together with both adjacent
phones

Clustering used to reduce 110,000 labels to around
5,000-10,000.
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Modelling phones with context

Adapting automatic speech recognition to new domains

Modelling context
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Modelling phones with context

Adapting automatic speech recognition to new domains

Modelling context
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Modelling phones with context

Adapting automatic speech recognition to new domains

Modelling context
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Modelling phones with context

Use multitask learning to avoid over-fitting to a single set of
targets

6000
tied CD
targets

Alternative state 
eg. context-

indepent phones

Acoustic 
features
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Speech recognition results

Number of states

1000 2000 3000 4000 5000 6000 7000 8000

W
E

R
 (

%
)

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

20.5

single task

monophone multitask
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Curriculum learning

Multitask learning

Student-teacher models
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Student teacher models

We have seen that it’s possible to learn a better model from
alternative labellings of the data, rather than fixing on a single
hard set of labels

What if we replaced the labelling with the predictions from
another model?

Effectively “soft” labels → richer and more informative

This is the idea behind student-teacher models
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Student teacher models

Train a smaller, weaker model to mimic the outputs of a
larger model

Minimise the KL divergence between the two:

KL(PT , PS) =
∑
n

∑
i

PT (si |xn) log
PT (si |xn)

PS(si |xn)

Training shallow nets to mimic deep nets has given
performance on speech recognition data sets previously
achievable only by deeper models
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Example (Ba and Caruana, 2015)

train), we see that a neural net with one hidden layer (SNN-MIMIC-400k) can be trained to perform
comparably to a CNN, even though the SNN-MIMIC-400k net has no convolutional or pooling lay-
ers. This is interesting because it suggests that a large single hidden layer without a topology custom
designed for the problem is able to reach the performance of a deep convolutional neural net that
was carefully engineered with prior structure and weight-sharing without any increase in the number
of training examples, even though the same architecture trained on the original data could not.
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Figure 1: Accuracy of SNNs, DNNs, and Mimic SNNs vs. # of parameters on TIMIT Dev (left) and
Test (right) sets. Accuracy of the CNN and target ECNN are shown as horizontal lines for reference.

Figure 1 shows the accuracy of shallow nets and deep nets trained on the original TIMIT 1.1M data,
and shallow mimic nets trained on the ECNN targets, as a function of the number of parameters in
the models. The accuracy of the CNN and the teacher ECNN are shown as horizontal lines at the top
of the figures. When the number of parameters is small (about 1 million), the SNN, DNN, and SNN-
MIMIC models all have similar accuracy. As the size of the hidden layers increases and the number
of parameters increases, the accuracy of a shallow model trained on the original data begins to lag
behind. The accuracy of the shallow mimic model, however, matches the accuracy of the DNN until
about 4 million parameters, when the DNN begins to fall behind the mimic. The DNN asymptotes
at around 10M parameters, while the shallow mimic continues to increase in accuracy. Eventually
the mimic asymptotes at around 100M parameters to an accuracy comparable to that of the CNN.
The shallow mimic never achieves the accuracy of the ECNN it is trying to mimic (because there
is not enough unlabeled data), but it is able to match or exceed the accuracy of deep nets (DNNs)
having the same number of parameters trained on the original data.

4 Object Recognition: CIFAR-10

To verify that the results on TIMIT generalize to other learning problems and task domains, we ran
similar experiments on the CIFAR-10 Object Recognition Task[12]. CIFAR-10 consists of a set
of natural images from 10 different object classes: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, truck. The dataset is a labeled subset of the 80 million tiny images dataset[18] and is
divided into 50,000 train and 10,000 test images. Each image is 32x32 pixels in 3 color channels,
yielding input vectors with 3072 dimensions. We prepared the data by subtracting the mean and
dividing the standard deviation of each image vector to perform global contrast normalization. We
then applied ZCA whitening to the normalized images. This pre-processing is the same used in [9].

4.1 Learning to Mimic an Ensemble of Deep Convolutional CIFAR-10 Models

We follow the same approach as with TIMIT: An ensemble of deep CNN models is used to label
CIFAR-10 images for model compression. The logit predictions from this teacher model are used
as regression targets to train a mimic shallow neural net (SNN). CIFAR-10 images have a higher
dimension than TIMIT (3072 vs. 1845), but the size of the CIFAR-10 training set is only 50,000
compared to 1.1 million examples for TIMIT. Fortunately, unlike TIMIT, in CIFAR-10 we have
access to unlabeled data from a similar distribution by using the superset of CIFAR-10: the 80
million tiny images dataset. We add the first one million images from the 80 million set to the
original 50,000 CIFAR-10 training images to create a 1.05M mimic training (transfer) set.

5
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Conclusions

When training a discriminative model, we should be careful
about the labelling that is used...

... especially if the labelling is in some way arbitrary

View multiple labelling schemes, or soft labelling, as an
additional source of information about the samples

Learn more general representations by fitting to multiple tasks
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