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Learning hidden representations

Hidden
representation

Input
features

Output
labels

@ Higher layers of deep neural networks are assumed to learn
increasingly more abstract representations of the data

@ Learning a good hidden representation enables the network to
generalise well to unseen examples
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Training deep neural networks

@ Hard to find a good minimum when the training criterion is
highly non-convex
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Training deep neural networks

@ Hard to find a good minimum when the training criterion is
highly non-convex

@ Unsupervised pre-training: start the optimisation in a
“good” region of parameter space that describes observed
(unlabelled) samples

@ Alternatively — consider better methods of supervised
training
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The label problem

@ Supervised training assumes we have a suitable label for each
training sample
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The label problem

@ Supervised training assumes we have a suitable label for each
training sample
@ Even if the labels are hand-generated, and “correct”, there are
problems:
e Does the labelling describe all the important properties of the
data?
e Is it too simple?
e Or too difficult to learn from a flat start?
e Is it well-defined?

@ This lecture will explore these issues.
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The rest of this lecture

@ Curriculum learning
o Multitask learning

@ Student-teacher models
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Curriculum learning

o If a task is difficult, it may be hard to learn from scratch from
a limited quantity of data
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Curriculum learning

o If a task is difficult, it may be hard to learn from scratch from
a limited quantity of data

@ Learn how humans do — from simpler examples first, moving
on to more complex examples

@ Difficulty can be defined with respect to the entropy of the
training data distribution

@ Easier samples — less noise in the error signals

@ Greater size of label space — samples harder to classify
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Train on easy data
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Then train on harder data
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Easy data

Learn approximate decision boundaries...
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Harder data

Then learn fine-grained decision boundaries...
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@ Recognising shapes in images (toy example)

«S3* =
HlF N

@ Increasing the vocabulary of a language model

@ In automatic speech recognition, modelling phonetic units
with and without context
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@ Curriculum learning
@ Multitask learning

@ Student-teacher models
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@ In machine learning, we normally break a complex problem
down into tractable sub-problems, and learn to solve one
problem at a time.
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In machine learning, we normally break a complex problem
down into tractable sub-problems, and learn to solve one
problem at a time.

This potentially ignores rich sources of information found in
the training signals of other tasks

Caruana [1997] proposed multitask learning as a means of
inductive transfer between tasks

This acts as a form of bias, causing the classifier to prefer
hypotheses that explain more than one task, improving
generalisation
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Multitask learning illustrated
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Add a related task...
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Representation may overlap...
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Share the representation...
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... and update with both error signals

\
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Data Primary task Secondary task
Images Face detections Facial landmarks
Audio Speech recognition | Speaker recognition
Biological | Gene expression ?

Often autoencoding is used as a secondary task.
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Why does it work?

o Data amplification to minimise the effect of noise in the
training signals
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Why does it work?

Data amplification to minimise the effect of noise in the
training signals

Better selection of shared hidden representations, reducing
the effect of irrelevent inputs when there is limited data

Eavesdropping on a good underlying representation that may
be easily learned for one task but not for another.

Representation bias — tasks prefer representations that other
tasks also prefer

Using extra features as output may be better than using
them as input
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Taking multitask learning further

o We've seen that adding incorporating additional label
information in training can result in better hidden
representations
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Taking multitask learning further

o We've seen that adding incorporating additional label
information in training can result in better hidden
representations

@ What if we derive different variants of a single labelling and
train in a multitask way?

@ Motivated by curriculum learning
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lllustration: classifying cats and dogs
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Learn useful discriminative features

Shared “animal”

representation
ears, fur, tail, legs...
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Could we learn the right features
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Could we learn the right features
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Better to discriminate between breeds?

Shared “animal”

representation
legs, tail, ears...
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Better to discriminate between breeds?
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Solution: learn both sets of labels

Shared
Representation

Y Y Y

Animal
Features
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Solution: learn both sets of labels
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Example: phone modelling for speech recognition

@ We want to model phones, the distinct units of speech (48 in
English)

@ But the placement of a phone in the input acoustic feature
space is highly dependent on the surrounding phones

@ Usually, DNNs model a phone together with both adjacent
phones

@ Clustering used to reduce 110,000 labels to around
5,000-10,000.
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Modelling phones with context
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Modelling phones with context
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Modelling phones with context
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Modelling phones with context
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Modelling phones with context

@ Use multitask learning to avoid over-fitting to a single set of

targets
6000
tied CD
targets
Acoustic
features

Alternative state
eg. context-
indepent phones
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Speech recognition results
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@ Curriculum learning
@ Multitask learning

o Student-teacher models
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Student teacher models

@ We have seen that it's possible to learn a better model from
alternative labellings of the data, rather than fixing on a single
hard set of labels
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Student teacher models

We have seen that it's possible to learn a better model from
alternative labellings of the data, rather than fixing on a single
hard set of labels

What if we replaced the labelling with the predictions from
another model?

Effectively “soft” labels — richer and more informative

This is the idea behind student-teacher models
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Student teacher models

@ Train a smaller, weaker model to mimic the outputs of a
larger model
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Student teacher models

@ Train a smaller, weaker model to mimic the outputs of a
larger model

@ Minimise the KL divergence between the two:

7(silxn)
KL(PTaPS ZZPT SI’XH |Og PS(S,I‘X:)

@ Training shallow nets to mimic deep nets has given
performance on speech recognition data sets previously
achievable only by deeper models
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Example (Ba and Caruana, 2
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Conclusions

@ When training a discriminative model, we should be careful
about the labelling that is used...
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Conclusions

@ When training a discriminative model, we should be careful
about the labelling that is used...

@ ... especially if the labelling is in some way arbitrary

e View multiple labelling schemes, or soft labelling, as an
additional source of information about the samples

@ Learn more general representations by fitting to multiple tasks

MLP Lecture 11 32



@ Y. Bengio, J. Louradour, R. Collobert, and J. Weston,
“Curriculum learning,” in Proc. ICML, 2009.

e R. Caruana, “Multitask learning,” Machine learning, vol. 28,
pp. 41-75, 1997.

@ J. Ba and R. Caruana, “Do deep nets really need to be
deep?,” in Proc. NIPS, 2014.

o P. Bell, P. Swietojanski, and S. Renals, “Multitask learning of
context-dependent targets in deep neural network acoustic
models”, in [EEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 25, issue 2, 2017

MLP Lecture 11 33



