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Introduction - Recurrent Neural Networks (RNNs)

o Modelling sequential data
@ Recurrent hidden unit connections

@ Training RNNs: Back-propagation through time
@ LSTMs
°

Examples (speech and language)
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Sequential Data

@ Modelling sequential data
with time dependences
between feature vectors
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Sequential Data

@ Modelling sequential data
with time dependences
between feature vectors

et O OO @ Can model fixed context with
a feed-forward network with
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added to the network input
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Sequential Data

@ Modelling sequential data
with time dependences

apt O O O between feature vectors
@ Can model fixed context with

a feed-forward network with
'i?;‘;f,?* OO previous time input vectors
added to the network input
: Finite context determined
input °
O O by window width

@ Model sequential inputs using
recurrent connections to learn
a time-dependent state

o Potentially infinite context
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Recurrent networks

If there was no external input... think of recurrent networks in
terms of the dynamics of the recurrent hidden state

@ Settle to a fixed point — stable representation

@ Regular oscillation (“limit cycle”) — learn some kind of
repetition

@ Chaotic dynamics (non-repetitive) — theoretically interesting
(“computation at the edge of chaos”)

Useful behaviours of recurrent networks with external inputs:

@ Recurrent state as memory — remember things for
(potentially) an infinite time

@ Recurrent state as information compression — compress a
sequence into a state representation
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Vanilla RNNs

MLP Lecture 9 Recurrent Networks



Simplest recurrent network

H
yk(t) = softmax (Z W,Ef)h,(t) + bk)

r=0

hj(t) = sigmoid Z My Z (R)h (t—1)+b;

-~

Recurrent part
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Recurrent network unfolded in time

‘ Output (t-1) ‘ ‘ Output (t) ‘ Output (t+1)
w?® w® w®
w® w® w® w’)
4r‘ Hidden (t-1) }—b{ Hidden (t) }—b{ Hidden (t+1) }—'
w®) w® w®
‘ Input (t-1) ‘ ‘

Input (t) ‘ Input (t+1)

@ An RNN for a sequence of T inputs can be viewed as a deep
T-layer network with shared weights
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Recurrent network unfolded in time

Output (t-1) ‘ Output (1 ‘ ‘ Output (t+1) ‘
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Input (t-1) ‘ Input (t) ‘ ‘ Input (t+1) ‘

@ An RNN for a sequence of T inputs can be viewed as a deep
T-layer network with shared weights
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Recurrent network unfolded in time

Output (t-1) ‘ Output (t) ‘ ‘ Output (t+1) ‘

w® w® l
(R ® (R) J(R)
L.‘ Hidden (t-1) }L" Hidden (t) }“—v{ Hidden (t+1) }u—'
- <+
U/'(l) l Uf(l) l 'U/'(l) l
Input (t-1) ‘ Input (t) ‘ ‘ Input (t+1) ‘

@ An RNN for a sequence of T inputs can be viewed as a deep
T-layer network with shared weights
@ We can train an RNN by doing backprop through this
unfolded network, making sure we share the weights
@ Weight sharing
o if two weights are constrained to be equal (w; = w,) then they
will stay equal if the weight changes are equal
(OE/Owr = DE JOws)
e achieve this by updating with (OE /0wy + OE /Ow,) (cf Conv
Nets)
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Back-propagation through time (BPTT)

o We can train a network by unfolding and back-propagating
through time, summing the derivatives for each weight as we
go through the sequence

@ More efficiently, run as a recurrent network

e cache the unit outputs at each timestep

e cache the output errors at each timestep

e then backprop from the final timestep to zero, computing the
derivatives at each step

e compute the weight updates by summing the derivatives across
time

@ Expensive — backprop for a 1,000 item sequence equivalent to
a 1,000-layer feed-forward network

@ Truncated BPTT — backprop through just a few time steps
(e.g. 20)
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Vanishing and exploding gradients

@ BPTT involves taking the product of many gradients (as in a
very deep network) — this can lead to vanishing (component
gradients less than 1) or exploding (greater than 1) gradients

@ This can prevent effective training
@ Modified optimisation algorithms
o RMSProp (and similar algorithms) — normalise the gradient for
each weight by average of it magnitude, with a learning rate
for each weight
o Hessian-free — an approximation to second-order approaches
which use curvature information
@ Modified hidden unit transfer functions
o Long short term memory (LSTM)

o Linear self-recurrence for each hidden unit (long-term memory)
o Gates - dynamic weights which are a function of their inputs

o Gated recurrent units
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Vanilla RNN
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LSTM

e Internal recurrent state (“cell”) c(t) combines previous
state c(t — 1) and LSTM input g(t)

MLP Lecture 9 13



MLP Lecture 9 14



LSTM — Internal recurrent state
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LSTM

e Internal recurrent state (“cell”) c(t) combines previous
state c(t — 1) and LSTM input g(t)

o Gates - weights dependent on the current input and the
previous state

e Input gate: controls how much input to the unit g(t) is
written to the internal state c(t)

o Forget gate: controls how much of the previous internal
state c¢(t — 1) is written to the internal state c(t)

e Input and forget gates together allow the network to control
what information is stored and overwritten at each step
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LSTM — Input Gate
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LSTM - Forget Gate
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LSTM — Input and Forget Gates
M

OC(H) F(t; x(1), h(t—1ﬂ > HC(T) v
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I(t; x(1), h(t-1))
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|(t) =0 (W;XX(t) + W,'hh(t — 1) + b,) g(t) = thx(t) + Whhh(t — 1) + by

F(t) = o (Wex(t) + Wgh(t —1) +br) c(t) =F(t)oc(t — 1)+ I(t) o g(t)
o is the sigmoid function o is element-wise vector multiply
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LSTM

e Internal recurrent state (“cell”) c(t) combines previous
state c(t — 1) and LSTM input g(t)

o Gates - weights dependent on the current input and the
previous state

e Input gate: controls how much input to the unit g(t) is
written to the internal state c(t)

o Forget gate: controls how much of the previous internal
state c¢(t — 1) is written to the internal state c(t)

e Input and forget gates together allow the network to control
what information is stored and overwritten at each step
@ Output gate: controls how much of each unit's activation is
output by the hidden state — it allows the LSTM cell to kepp
information that is not relevant at the current time, but may
be relevant later
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LSTM — Input and Forget Gates
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LSTM — Output Gate
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LSTM — Output Gate
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OC(H) Fit X0, he1)] «w |1 '
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o (Wikx(t) + Wish(t — 1) + b;)  g(t) = Whex(t) + Wpsh(t — 1) + by
F(t) = o (Wax(t) + Wght — 1) +bf)  c(t) =F(t)oc(t — 1) + I(t) o g(t)
o (Woxx(t) + Worh(t — 1) + bo) h(t) = tanh (O(t) o c(t))
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Example applications using RNNs
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Example 1: speech recognition with recurrent networks
< Phoneme Probabilities

! Recurrent
Neural
Network

t

Speech
Acoustics

T Robinson et al (1996). “The use of recurrent networks in
continuous speech recognition”, in Automatic Speech and Speaker
Recognition Advanced Topics (Lee et al (eds)), Kluwer, 233-258.
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Example 2: speech recognition with stacked LSTMs

’ input ‘ ’ mput ‘ ’ mput ‘ ’ mput ‘

l
| LsT™ ‘T ] LSTM H ] LSTM ] LSTM -
J ’recurrent}*

’ output ‘ ’ LSTM ‘4—

output (c) LSTMP i

(d) DLSTMP

recurrent

| output | | LSTM
@ LSTM

H Sak et al (2014). “Long Short-Term Memory based Recurrent

Neural Network Architectures for Large Scale Acoustic Modelling”,

Interspeech.
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Example 3: recurrent network language models

s(t-1)

T Mikolov et al (2010). “Recurrent Neural Network Based
Language Model", Interspeech
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Example 4: recurrent encoder-decoder

Machine translation

? 1 1 1
||—>Il—>||—>||—>||—>IT|—>ITl—>II

T T

> X

= —>

A B C <EOS> z
Decoder o | Sutskever et al (2014).
Yr “Sequence to Sequence

Learning with Neural
Networks", NIPS.

) e K Cho et al (2014). “Learning
Phrase Representations using
% T RNN Encoder-Decoder for
X X, Xr Statistical Machine
Encoder Translation”, EMNLP.
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@ RNNSs can model sequences

@ Unfolding an RNN gives a deep feed-forward network

@ Back-propagation through time

e LSTM

@ More on recurrent networks next semester in NLU (and 1-2
lectures in ASR and MT)
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