Recurrent neural networks
Modelling sequential data

MLP Lecture 9

Recurrent Networks

Steve Renals

Machine Learning Practical — MLP Lecture 9
16 November 2016

MLP Lecture 9 2

Introduction - Recurrent Neural Networks (RNNs)

o Modelling sequential data
@ Recurrent hidden unit connections

@ Training RNNs: Back-propagation through time
@ LSTMs
°

Examples (speech and language)

MLP Lecture 9 3

Sequential Data

@ Modelling sequential data
with time dependences
between feature vectors

apit O OO
hiaeen (OO OOOO
mt OOOOOO0OO00O

x1 x2 x3 x1 x2 x3 x1 x2 x3
t-2 t-1 t

2 frames of context

MLP Lecture 9 4

Sequential Data

@ Modelling sequential data
with time dependences
between feature vectors

et O OO @ Can model fixed context with
a feed-forward network with
hsen O OO OO0 previous time input vectors
added to the network input

e OOOO0O00000 o Finite context determined

x1 x2 x3 x1 x2 x3 x1 x2 x3
t-2 t-1 t

by window width

2 frames of context

MLP Lecture 9 4

Sequential Data

@ Modelling sequential data
with time dependences

apt O O O between feature vectors
@ Can model fixed context with

a feed-forward network with
'i?;‘;f,?* OO previous time input vectors
added to the network input
: Finite context determined
input °
O O by window width

@ Model sequential inputs using
recurrent connections to learn
a time-dependent state

o Potentially infinite context

x1 x2 x3
t

MLP Lecture 9 4

Recurrent networks

If there was no external input... think of recurrent networks in
terms of the dynamics of the recurrent hidden state

@ Settle to a fixed point — stable representation

@ Regular oscillation (“limit cycle”) — learn some kind of
repetition

@ Chaotic dynamics (non-repetitive) — theoretically interesting
(“computation at the edge of chaos”)

Useful behaviours of recurrent networks with external inputs:

@ Recurrent state as memory — remember things for
(potentially) an infinite time

@ Recurrent state as information compression — compress a
sequence into a state representation

MLP Lecture 9 5

Vanilla RNNs

MLP Lecture 9 Recurrent Networks

Simplest recurrent network

H
yk(t) = softmax (Z W,Ef)h,(t) + bk)

r=0

hj(t) = sigmoid Z My Z (R)h (t—1)+b;

-~

Recurrent part

Output (t)

w®

T

w®

‘ Input (t) ‘ ‘ Hidden (t-1) ‘

MLP Lecture 9 7

Recurrent network unfolded in time

‘ Output (t-1) ‘ ‘ Output (t) ‘ Output (t+1)
w?® w® w®
w® w® w® w’)
4r‘ Hidden (t-1) }—b{ Hidden (t) }—b{ Hidden (t+1) }—'
w®) w® w®
‘ Input (t-1) ‘ ‘

Input (t) ‘ Input (t+1)

@ An RNN for a sequence of T inputs can be viewed as a deep
T-layer network with shared weights

MLP Lecture 9 8

Recurrent network unfolded in time

Output (t-1) ‘ Output (1 ‘ ‘ Output (t+1) ‘
w® w® w® l

4.‘“’“{) Hidden (t-1) }—'“’(R) ‘ Hidden (t) }—v{“" o Hidden (t+1) }_'w(R)
w® w® w® l

Input (t-1) ‘ Input (t) ‘ ‘ Input (t+1) ‘

@ An RNN for a sequence of T inputs can be viewed as a deep
T-layer network with shared weights

MLP Lecture 9 8

Recurrent network unfolded in time

Output (t-1) ‘ Output (t) ‘ ‘ Output (t+1) ‘

w® w® l
(R ® (R) J(R)
L.‘ Hidden (t-1) }L" Hidden (t) }“—v{ Hidden (t+1) }u—'
- <+
U/'(l) l Uf(l) l 'U/'(l) l
Input (t-1) ‘ Input (t) ‘ ‘ Input (t+1) ‘

@ An RNN for a sequence of T inputs can be viewed as a deep
T-layer network with shared weights
@ We can train an RNN by doing backprop through this
unfolded network, making sure we share the weights
@ Weight sharing
o if two weights are constrained to be equal (w; = w,) then they
will stay equal if the weight changes are equal
(OE/Owr = DE JOws)
e achieve this by updating with (OE /0wy + OE /Ow,) (cf Conv
Nets)

MLP Lecture 9 8

w®

Back-propagation through time (BPTT)

o We can train a network by unfolding and back-propagating
through time, summing the derivatives for each weight as we
go through the sequence

@ More efficiently, run as a recurrent network

e cache the unit outputs at each timestep

e cache the output errors at each timestep

e then backprop from the final timestep to zero, computing the
derivatives at each step

e compute the weight updates by summing the derivatives across
time

@ Expensive — backprop for a 1,000 item sequence equivalent to
a 1,000-layer feed-forward network

@ Truncated BPTT — backprop through just a few time steps
(e.g. 20)

MLP Lecture 9 9

Vanishing and exploding gradients

@ BPTT involves taking the product of many gradients (as in a
very deep network) — this can lead to vanishing (component
gradients less than 1) or exploding (greater than 1) gradients

@ This can prevent effective training
@ Modified optimisation algorithms
o RMSProp (and similar algorithms) — normalise the gradient for
each weight by average of it magnitude, with a learning rate
for each weight
o Hessian-free — an approximation to second-order approaches
which use curvature information
@ Modified hidden unit transfer functions
o Long short term memory (LSTM)

o Linear self-recurrence for each hidden unit (long-term memory)
o Gates - dynamic weights which are a function of their inputs

o Gated recurrent units

MLP Lecture 9 10

LSTM

LP Lecture 9

Recurrent Networks

Vanilla RNN

N ==

—_—
>

9(t)
| »,
» »,
Whn \W i
———————————————— h(t-1) X(0

g(t) = WhXX(t) + Whhh(t — 1) + by
() = tanh (g(1))

MLP Lecture 9

LSTM

e Internal recurrent state (“cell”) c(t) combines previous
state c(t — 1) and LSTM input g(t)

MLP Lecture 9 13

MLP Lecture 9 14

LSTM — Internal recurrent state

c(t-1)

at)
+) M
Whh; ;Whm

R ——— > h(t-1) X(1)

MLP Lecture 9 14

LSTM

e Internal recurrent state (“cell”) c(t) combines previous
state c(t — 1) and LSTM input g(t)

o Gates - weights dependent on the current input and the
previous state

e Input gate: controls how much input to the unit g(t) is
written to the internal state c(t)

o Forget gate: controls how much of the previous internal
state c¢(t — 1) is written to the internal state c(t)

e Input and forget gates together allow the network to control
what information is stored and overwritten at each step

MLP Lecture 9 15

c(t-1)

MLP Lecture 9

at)
+
Whh ; ;Whm

> h(t-1)

x(t)

I/

LSTM — Input Gate
)

1

>LfRc(t)
[it x(t, het-1)

at)
+
Wh h V'Yhm
7_T\/

e > h(t-1) X(1)

c(t-1)

MLP Lecture 9 16

LSTM - Forget Gate

h(t-1) —----=- ‘ e :
: 4 |
e |
o(t-1) F(t; x(t), h(t-1)) Rc(r) v
Qf It x(0), h(t-1)]
| gt
gl
- !

+
v]hh hr

oo > h(t-1) x(t)

MLP Lecture 9 16

LSTM — Input and Forget Gates
M

OC(H) F(t; x(1), h(t—1ﬂ > HC(T) v

%

I(t; x(1), h(t-1))

9t)

37

Whn Vha
/ \
——————————————— > h(t-1) X(t)

|(t) =0 (W;XX(t) + W,'hh(t — 1) + b,) g(t) = thx(t) + Whhh(t — 1) + by

F(t) = o (Wex(t) + Wgh(t —1) +br) c(t) =F(t)oc(t — 1)+ I(t) o g(t)
o is the sigmoid function o is element-wise vector multiply

MLP Lecture 9

LSTM

e Internal recurrent state (“cell”) c(t) combines previous
state c(t — 1) and LSTM input g(t)

o Gates - weights dependent on the current input and the
previous state

e Input gate: controls how much input to the unit g(t) is
written to the internal state c(t)

o Forget gate: controls how much of the previous internal
state c¢(t — 1) is written to the internal state c(t)

e Input and forget gates together allow the network to control
what information is stored and overwritten at each step
@ Output gate: controls how much of each unit's activation is
output by the hidden state — it allows the LSTM cell to kepp
information that is not relevant at the current time, but may
be relevant later

MLP Lecture 9 18

LSTM — Input and Forget Gates

h(t-1) —----=- ‘ e :
: 4 |
e |
o(t-1) F(t; x(t), h(t-1)) Rc(r) v
Qf It x(0), h(t-1)]
| gt
gl
- !

+
v]hh hr

oo > h(t-1) x(t)

MLP Lecture 9 19

LSTM — Output Gate

h(t-1) ==-==---- | h(t)==--mmmmmmmmmm oo |
1 ‘ﬁ |
O(t; x(v), h(t-1)) \‘—@ '

c(t-1) i F(t; x(t), h(t-1)) o~ c(t)
It x(0). h(t1) |
9t
i 7
- i

MLP Lecture 9 19

LSTM — Output Gate

s S

Iy
_E%

o xtt), he-1) <)

OC(H) Foxw,ne)] L T \

%

>

(1t x0), nt4)]

K
at)

W, m/ \{’vyn;,
——————————————— > ht-1) (1)
O(t) = o (Woxx(t) + Worh(t — 1) + b,) h(t) = tanh (O(t) o c(t))

MLP Lecture 9

OC(H) Fit X0, he1)] «w |1 '

——————————————— > h(t-1) X(t)

o (Wikx(t) + Wish(t — 1) + b;) g(t) = Whex(t) + Wpsh(t — 1) + by
F(t) = o (Wax(t) + Wght — 1) +bf) c(t) =F(t)oc(t — 1) + I(t) o g(t)
o (Woxx(t) + Worh(t — 1) + bo) h(t) = tanh (O(t) o c(t))

MLP Lecture 9

Example applications using RNNs

MLP Lecture 9

Example 1: speech recognition with recurrent networks
< Phoneme Probabilities

! Recurrent
Neural
Network

t

Speech
Acoustics

T Robinson et al (1996). “The use of recurrent networks in
continuous speech recognition”, in Automatic Speech and Speaker
Recognition Advanced Topics (Lee et al (eds)), Kluwer, 233-258.

MLP Lecture 9 px}

Example 2: speech recognition with stacked LSTMs

’ input ‘ ’ mput ‘ ’ mput ‘ ’ mput ‘

l
| LsT™ ‘T] LSTM H] LSTM] LSTM -
J ’recurrent}*

’ output ‘ ’ LSTM ‘4—

output (c) LSTMP i

(d) DLSTMP

recurrent

| output | | LSTM
@ LSTM

H Sak et al (2014). “Long Short-Term Memory based Recurrent

Neural Network Architectures for Large Scale Acoustic Modelling”,

Interspeech.
MLP Lecture 9

Example 3: recurrent network language models

s(t-1)

T Mikolov et al (2010). “Recurrent Neural Network Based
Language Model", Interspeech

MLP Lecture 9 25

Example 4: recurrent encoder-decoder

Machine translation

? 1 1 1
||—>Il—>||—>||—>||—>IT|—>ITl—>II

T T

> X

= —>

A B C <EOS> z
Decoder o | Sutskever et al (2014).
Yr “Sequence to Sequence

Learning with Neural
Networks", NIPS.

) e K Cho et al (2014). “Learning
Phrase Representations using
% T RNN Encoder-Decoder for
X X, Xr Statistical Machine
Encoder Translation”, EMNLP.

MLP Lecture 9 26

@ RNNSs can model sequences

@ Unfolding an RNN gives a deep feed-forward network

@ Back-propagation through time

e LSTM

@ More on recurrent networks next semester in NLU (and 1-2
lectures in ASR and MT)

MLP Lecture 9 27

