
Convolutional Networks (part 2)

Steve Renals

Machine Learning Practical — MLP Lecture 8
9 November 2016

MLP Lecture 8 Convolutional Networks (part 2) 1

Recap: Convolutional Network

Input 28x28 3x24x24 Feature Maps

 3x12x12 Pooling Layers
Hidden
Layer

Softmax
Output
Layer

Simple ConvNet:

One convolutional layer with max-pooling

Final fully connected hidden layer (no sharing weight)

Softmax output layer

MLP Lecture 8 Convolutional Networks (part 2) 2

Recap: Stacking convolutional layers

Input 28x28 3x24x24 Feature Maps

 3x12x12 Pooling Layers

 6x8x8Feature Maps

 6x4x4
Pooling Layers

Local receptive fields

Weight sharing

Pooling/subsampling

MLP Lecture 8 Convolutional Networks (part 2) 3

Training Convolutional Networks – Pooling Layer

Input 28x28 3x24x24 Feature Maps

 3x12x12 Pooling Layers

 6x8x8Feature Maps

 6x4x4
Pooling Layers fully connected

sigmoid hidden layer
 fully connected

softmax output layer

GRADIENTS

DELTAS

LAYER L
LAYER L-1

LAYER L-2

LAYER L-3LAYER L-4

LAYER L-5

�L = hL � tL

@E

@WL
= hL�1|�L

�L�1 = �LWL| � f 0(aL�1)

@E

@WL�1
= hL�2|�L�1

�L�2 = �L�1WL�1|�L�3 = �L�2GL�2| � f 0(aL�3)

MLP Lecture 8 Convolutional Networks (part 2) 4

Training Convolutional Networks – Pooling Layer

 3x12x12 Pooling Layers

 6x8x8Feature Maps

 6x4x4
Pooling Layers fully connected

sigmoid hidden layer
 fully connected

softmax output layer

GRADIENTS

DELTAS

LAYER L
LAYER L-1

LAYER L-2

LAYER L-3LAYER L-4

�L = hL � tL

@E

@WL
= hL�1|�L

�L�1 = �LWL| � f 0(aL�1)

@E

@WL�1
= hL�2|�L�1

�L�2 = �L�1WL�1|�L�3 = �L�2GL�2| � f 0(aL�3)

G is a “pseudo-weight matrix” for max-pooling which is set during
the forward propagation: Gba = 1 if feature map unit b is contained
in max-pool a and is the maximum value for the current input.
Note that G is different for each item in the minibatch.

MLP Lecture 8 Convolutional Networks (part 2) 5

Training Convolutional Networks – Convolutional Layer

 3x12x12 Pooling Layers

 6x8x8Feature Maps

GRADIENTS

DELTAS

LAYER L-3LAYER L-4

�L�3 = �L�2GL�2| � f 0(aL�3)

Training the convolutional layer is more complicated

MLP Lecture 8 Convolutional Networks (part 2) 6

Training Convolutional Networks – Convolutional Layer

 3x12x12 Pooling Layers

 1x8x8Feature Maps

GRADIENTS

DELTAS

LAYER L-3LAYER L-4

�L�3 = �L�2GL�2| � f 0(aL�3)

Only need to consider one pooling layer

MLP Lecture 8 Convolutional Networks (part 2) 6

Training Convolutional Networks – Convolutional Layer

 3x12x12 Pooling Layers

 1x8x8Feature Maps

GRADIENTS

DELTAS

LAYER L-3LAYER L-4

�L�3 = �L�2GL�2| � f 0(aL�3)

Simplify by only considering one feature map

MLP Lecture 8 Convolutional Networks (part 2) 6

Convolutional Layer – Forward Prop

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

hi,j = sigmoid(
m�1X

k=0

m�1X

`=0

wk,`xi+k,j+` + b)

In the forward propagation, each hidden unit is connected to a
region of input units (the receptive field)

MLP Lecture 8 Convolutional Networks (part 2) 7

Convolutional Layer – Forward Prop

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

hi,j = sigmoid(
m�1X

k=0

m�1X

`=0

wk,`xi+k,j+` + b)

In the forward propagation, each hidden unit is connected to a
region of input units (the receptive field)

MLP Lecture 8 Convolutional Networks (part 2) 7

Convolutional Layer – Forward Prop

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

hi,j = sigmoid(
m�1X

k=0

m�1X

`=0

wk,`xi+k,j+` + b)

In the forward propagation, each hidden unit is connected to a
region of input units (the receptive field)

MLP Lecture 8 Convolutional Networks (part 2) 7

Convolutional Layer – Forward Prop

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

hi,j = sigmoid(
m�1X

k=0

m�1X

`=0

wk,`xi+k,j+` + b)

In the forward propagation, each hidden unit is connected to a
region of input units (the receptive field)

MLP Lecture 8 Convolutional Networks (part 2) 7

Convolutional Layer – Back Prop

For backprop we need to consider the region of hidden units
connected to each input unit.

MLP Lecture 8 Convolutional Networks (part 2) 8

Convolutional Layer – Back Prop

For backprop we need to consider the region of hidden units
connected to each input unit.

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

The top-left input unit (1,1) is connected to just one hidden unit

MLP Lecture 8 Convolutional Networks (part 2) 8

Convolutional Layer – Back Prop

For backprop we need to consider the region of hidden units
connected to each input unit.

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

Input unit (2,2) is in the receptive fields of 2× 2 = 4 hidden units

MLP Lecture 8 Convolutional Networks (part 2) 8

Convolutional Layer – Back Prop

For backprop we need to consider the region of hidden units
connected to each input unit.

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

(3,3) is in the receptive fields of 3 × 3 = 9 hidden units

MLP Lecture 8 Convolutional Networks (part 2) 8

Convolutional Layer – Back Prop

For backprop we need to consider the region of hidden units
connected to each input unit.

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

(4,4) is in the receptive fields of 4 × 4 = 16 hidden units

MLP Lecture 8 Convolutional Networks (part 2) 8

Convolutional Layer – Back Prop

For backprop we need to consider the region of hidden units
connected to each input unit.

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

(5,5) and all units away from the edge are in the receptive fields of
5 × 5 = 25 hidden units

MLP Lecture 8 Convolutional Networks (part 2) 8

Convolutional Layer – Back Prop

For backprop we need to consider the region of hidden units
connected to each input unit.

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

(5,5) and all units away from the edge are in the receptive fields of
5 × 5 = 25 hidden units

MLP Lecture 8 Convolutional Networks (part 2) 8

Convolutional Layer – Back Prop

As usual we want to back-propagate the δ values:

δL−4s =
∑

j∈connected to s

wjsδ
L−3
j f ′(as)

Look at the shared weights used for back prop:

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

w(1,1)

MLP Lecture 8 Convolutional Networks (part 2) 9

Convolutional Layer – Back Prop

As usual we want to back-propagate the δ values:

δL−4s =
∑

j∈connected to s

wjsδ
L−3
j f ′(as)

Look at the shared weights used for back prop:

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

w(2,1)

MLP Lecture 8 Convolutional Networks (part 2) 9

Convolutional Layer – Back Prop

As usual we want to back-propagate the δ values:

δL−4s =
∑

j∈connected to s

wjsδ
L−3
j f ′(as)

Look at the shared weights used for back prop:

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

w(3,1)

MLP Lecture 8 Convolutional Networks (part 2) 9

Convolutional Layer – Back Prop

As usual we want to back-propagate the δ values:

δL−4s =
∑

j∈connected to s

wjsδ
L−3
j f ′(as)

Look at the shared weights used for back prop:

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

w(3,2)

MLP Lecture 8 Convolutional Networks (part 2) 9

Convolutional Layer – Back Prop

As usual we want to back-propagate the δ values:

δL−4s =
∑

j∈connected to s

wjsδ
L−3
j f ′(as)

Look at the shared weights used for back prop:

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

w(3,4)

MLP Lecture 8 Convolutional Networks (part 2) 9

Convolutional Layer – Back Prop

As usual we want to back-propagate the δ values:

δL−4s =
∑

j∈connected to s

wjsδ
L−3
j f ′(as)

Look at the shared weights used for back prop:

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

w(5,5)

MLP Lecture 8 Convolutional Networks (part 2) 9

Backprop as convolution

If we have an m ×m kernel size, we can pad the feature map with
(m − 1) rows and columns of 0s top and bottom, left and right.

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

MLP Lecture 8 Convolutional Networks (part 2) 10

Backprop as convolution

If we have an m ×m kernel size, we can pad the feature map with
(m − 1) rows and columns of 0s top and bottom, left and right.

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

Back prop can then be carried out as a convolution using the
weight matrix to scan the padded feature map... BUT the weight
matrix is rotated by 180 ◦ as shown before

MLP Lecture 8 Convolutional Networks (part 2) 10

Backprop as convolution

If we have an m ×m kernel size, we can pad the feature map with
(m − 1) rows and columns of 0s top and bottom, left and right.

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

Back prop can then be carried out as a convolution using the
weight matrix to scan the padded feature map... BUT the weight
matrix is rotated by 180 ◦ as shown before

MLP Lecture 8 Convolutional Networks (part 2) 10

Backprop as convolution

If we have an m ×m kernel size, we can pad the feature map with
(m − 1) rows and columns of 0s top and bottom, left and right.

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

Back prop can then be carried out as a convolution using the
weight matrix to scan the padded feature map... BUT the weight
matrix is rotated by 180 ◦ as shown before

MLP Lecture 8 Convolutional Networks (part 2) 10

Backprop as convolution

If we have an m ×m kernel size, we can pad the feature map with
(m − 1) rows and columns of 0s top and bottom, left and right.

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

Back prop can then be carried out as a convolution using the
weight matrix to scan the padded feature map... BUT the weight
matrix is rotated by 180 ◦ as shown before

MLP Lecture 8 Convolutional Networks (part 2) 10

Backprop as convolution

If we have an m ×m kernel size, we can pad the feature map with
(m − 1) rows and columns of 0s top and bottom, left and right.

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

Back prop can then be carried out as a convolution using the
weight matrix to scan the padded feature map... BUT the weight
matrix is rotated by 180 ◦ as shown before

MLP Lecture 8 Convolutional Networks (part 2) 10

Convolutional Layer – Back Prop

Back-propagation in the convolution layer, is also a convolution!
But we have to rotate the weight matrix W by 180◦, WR

Using the convolution operator we saw we can write the forward
prop as:

hL−3 = sigmoid(WL−3 ∗ hL−4 + bL−3)

And we can write the back-prop as:

δL−4 = WL−3R ∗ δL−3 ◦ f ′(aL−4)

MLP Lecture 8 Convolutional Networks (part 2) 11

Implementing multilayer networks

Example at a time:

input vector

weight matrix

output vector

d k k

d

MLP Lecture 8 Convolutional Networks (part 2) 12

Implementing multilayer networks

Minibatch:

input vector
(minibatch) weight matrix

output vector
(minibatch)

d k k

dn n

MLP Lecture 8 Convolutional Networks (part 2) 12

Implementing multilayer networks

Minibatch:

input vector
(minibatch) weight matrix

output vector
(minibatch)

d k k

dn n

input dimension x minibatch: Represent each layer as a
2-dimension matrix, where each row corresponds to a training
example, and the number of minibatch examples is the number of
rows

MLP Lecture 8 Convolutional Networks (part 2) 12

Implementing Convolutional Networks

Example at a time, single input image, single feature map:

input image weight matrix
(kernel)

feature map

x m

l

y

MLP Lecture 8 Convolutional Networks (part 2) 13

Implementing Convolutional Networks

Example at a time, single input image, multiple feature map:

input image weight matrices
(kernels)

feature maps

x m

l

y

MLP Lecture 8 Convolutional Networks (part 2) 13

Implementing Convolutional Networks

Example at a time, multiple input images, multiple feature map:

multiple
input images

weight matrices
(kernels)

feature maps

x

l

y

m

MLP Lecture 8 Convolutional Networks (part 2) 13

Implementing Convolutional Networks

Minibatch, multiple input images, multiple feature map:

minibatch of
multiple

input images

weight matrices
(kernels)

minibatch of
feature maps

x

l

y

m

.
nn

MLP Lecture 8 Convolutional Networks (part 2) 13

Implementing Convolutional Networks

Inputs / layer values:

Each input image (and convlutional and pooling layer) is
2-dimensions (x,y)
If we have multiple feature maps, then that is a third dimension
And the minibatch adds a fourth dimension
Thus we represent each input (layer values) using a
4-dimension tensor (array): (minibatch-size, num-fmaps, x, y)

Weight matrices (kernels)

Each weight matrix used to scan across an image has 2 spatial
dimensions (x,y)
If there are multiple feature maps to be computed, then that is
a third dimension
Multiple input feature maps adds a fourth dimension
Thus the weight matrices are also represented using a
4-dimension tensor: (num-fmaps-in, num-fmaps-out, x, y)

MLP Lecture 8 Convolutional Networks (part 2) 14

4D tensors in numpy

Both forward and back prop thus involves multiplying 4D tensors.
There are various ways to do this:

Explicitly loop over the dimensions: this results in simpler
code, but can be inefficient. Although using cython to
compile the loops as C can speed things up

Serialisation: By replicating input patches and weight
matrices, it is possible to convert the required 4D tensor
multiplications into a large dot product. Requires careful
manipulation of indices!

Convolutions: use explicit convolution functions for forward
and back prop, rotating for the backprop

MLP Lecture 8 Convolutional Networks (part 2) 15

Recent advances using

convolutional networks

MLP Lecture 8 Convolutional Networks (part 2) 16

ImageNet Classification (“AlexNet”)

Krizhevsky, Sutskever and Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks”, NIPS-2012. http:

//papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

MLP Lecture 8 Convolutional Networks (part 2) 17

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

ImageNet Classification (“VGGNet”)

Simonyan and Zisserman, “Very Deep Convolutional Networks for
Large-Scale Visual Recognition”, ILSVRC-2014.
http://www.robots.ox.ac.uk/~vgg/research/very_deep/

Network Design

Key design choices:
• 3x3 conv. kernels – very small
• conv. stride 1 – no loss of information

Other details:
• Rectification (ReLU) non-linearity
• 5 max-pool layers (x2 reduction)
• no normalisation
• 3 fully-connected (FC) layers

4
image

conv-64
conv-64
maxpool

FC-4096
FC-4096
FC-1000
softmax

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

224x224

112x112

56x56

28x28

14x14

7x7 49x512x4096
= 102.8M wts

16.8M wts
4.1M wts

2.4M wts

2.4M wts

2.4M wts

1.2M wts

0.6M wts

0.3M wts

0.2M wts

0.1M wts

Total
134M wts

MLP Lecture 8 Convolutional Networks (part 2) 18

http://www.robots.ox.ac.uk/~vgg/research/very_deep/

Deep Residual Learning (“ResNets”)

He et al, “Deep Residual Learning for Image Recognition”, CVPR-2016.

http://arxiv.org/abs/1512.03385

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

model top-1 err. top-5 err.

VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.

VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that

3x3, 64

1x1, 64

relu

1x1, 256

relu

relu

3x3, 64

3x3, 64

relu

relu

64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56⇥56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1⇥1, 3⇥3, and 1⇥1 convolutions, where the 1⇥1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3⇥3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.

6

7
x

7

c
o

n
v

,

6

4
,

/
2

p
o

o
l
,

/
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

a
v

g

p

o
o

l

f
c

 1
0

0
0

i
m

a
g

e

3
x

3
 c

o
n

v
,
 5

1
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

p
o

o
l
,

/
2

f
c

 4
0

9
6

f
c

 4
0

9
6

f
c

 1
0

0
0

i
m

a
g

e

o
u

t
p

u
t

s
iz

e
:

1

1
2

o
u

t
p

u
t

s
iz

e
:

2

2
4

o
u

t
p

u
t

s
i
z
e

:
 5

6

o
u

t
p

u
t

s
i
z
e

:
 2

8

o
u

t
p

u
t

s
i
z
e

:
 1

4

o
u

t
p

u
t

s
iz

e
:
 7

o
u

t
p

u
t

s
iz

e
:
 1

V
G

G
-
1

9
3

4
-
l
a

y
e

r
 p

l
a

in

7
x

7

c
o

n
v

,

6

4
,

/
2

p
o

o
l
,
 /

2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

a
v

g

p

o
o

l

f
c

 1
0

0
0

im
a

g
e

3
4

-
la

y
e

r
 r

e
s
id

u
a

l

Fi
gu

re
3.

E
xa

m
pl

e
ne

tw
or

k
ar

ch
ite

ct
ur

es
fo

r
Im

ag
eN

et
.

L
ef

t:
th

e
V

G
G

-1
9

m
od

el
[4

1]
(1

9.
6

bi
lli

on
FL

O
Ps

)
as

a
re

fe
re

nc
e.

M
id

-
dl

e:
a

pl
ai

n
ne

tw
or

k
w

ith
34

pa
ra

m
et

er
la

ye
rs

(3
.6

bi
lli

on
FL

O
Ps

).
R

ig
ht

:
a

re
si

du
al

ne
tw

or
k

w
ith

34
pa

ra
m

et
er

la
ye

rs
(3

.6
bi

lli
on

FL
O

Ps
).

T
he

do
tte

d
sh

or
tc

ut
si

nc
re

as
e

di
m

en
si

on
s.

Ta
bl

e
1

sh
ow

s
m

or
e

de
ta

ils
an

d
ot

he
rv

ar
ia

nt
s.

R
es

id
ua

lN
et

w
or

k.
B

as
ed

on
th

e
ab

ov
e

pl
ai

n
ne

tw
or

k,
w

e
in

se
rt

sh
or

tc
ut

co
nn

ec
tio

ns
(F

ig
.

3,
ri

gh
t)

w
hi

ch
tu

rn
th

e
ne

tw
or

k
in

to
its

co
un

te
rp

ar
tr

es
id

ua
lv

er
si

on
.

T
he

id
en

tit
y

sh
or

tc
ut

s
(E

qn
.(1

))
ca

n
be

di
re

ct
ly

us
ed

w
he

n
th

e
in

pu
ta

nd
ou

tp
ut

ar
e

of
th

e
sa

m
e

di
m

en
si

on
s

(s
ol

id
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

.W
he

n
th

e
di

m
en

si
on

si
nc

re
as

e
(d

ot
te

d
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

,w
e

co
ns

id
er

tw
o

op
tio

ns
:

(A
)

T
he

sh
or

tc
ut

st
ill

pe
rf

or
m

s
id

en
tit

y
m

ap
pi

ng
,w

ith
ex

tr
a

ze
ro

en
tr

ie
s

pa
dd

ed
fo

r
in

cr
ea

si
ng

di
m

en
si

on
s.

T
hi

s
op

tio
n

in
tr

od
uc

es
no

ex
tr

a
pa

ra
m

et
er

;(
B

)T
he

pr
oj

ec
tio

n
sh

or
tc

ut
in

E
qn

.(2
)i

s
us

ed
to

m
at

ch
di

m
en

si
on

s
(d

on
e

by
1⇥

1
co

nv
ol

ut
io

ns
).

Fo
r

bo
th

op
tio

ns
,w

he
n

th
e

sh
or

tc
ut

s
go

ac
ro

ss
fe

at
ur

e
m

ap
s

of
tw

o
si

ze
s,

th
ey

ar
e

pe
rf

or
m

ed
w

ith
a

st
ri

de
of

2.

3.
4.

Im
pl

em
en

ta
tio

n

O
ur

im
pl

em
en

ta
tio

n
fo

r
Im

ag
eN

et
fo

llo
w

s
th

e
pr

ac
tic

e
in

[2
1,

41
].

T
he

im
ag

e
is

re
si

ze
d

w
ith

its
sh

or
te

r
si

de
ra

n-
do

m
ly

sa
m

pl
ed

in
[2

56
,4

80
]

fo
r

sc
al

e
au

gm
en

ta
tio

n
[4

1]
.

A
22

4⇥
22

4
cr

op
is

ra
nd

om
ly

sa
m

pl
ed

fr
om

an
im

ag
e

or
its

ho
ri

zo
nt

al
fli

p,
w

ith
th

e
pe

r-
pi

xe
lm

ea
n

su
bt

ra
ct

ed
[2

1]
.T

he
st

an
da

rd
co

lo
ra

ug
m

en
ta

tio
n

in
[2

1]
is

us
ed

.W
e

ad
op

tb
at

ch
no

rm
al

iz
at

io
n

(B
N

)
[1

6]
ri

gh
t

af
te

r
ea

ch
co

nv
ol

ut
io

n
an

d
be

fo
re

ac
tiv

at
io

n,
fo

llo
w

in
g

[1
6]

.
W

e
in

iti
al

iz
e

th
e

w
ei

gh
ts

as
in

[1
3]

an
d

tr
ai

n
al

lp
la

in
/r

es
id

ua
ln

et
s

fr
om

sc
ra

tc
h.

W
e

us
e

SG
D

w
ith

a
m

in
i-

ba
tc

h
si

ze
of

25
6.

T
he

le
ar

ni
ng

ra
te

st
ar

ts
fr

om
0.

1
an

d
is

di
vi

de
d

by
10

w
he

n
th

e
er

ro
rp

la
te

au
s,

an
d

th
e

m
od

el
s

ar
e

tr
ai

ne
d

fo
ru

p
to

60
⇥

10
4

ite
ra

tio
ns

.W
e

us
e

a
w

ei
gh

td
ec

ay
of

0.
00

01
an

d
a

m
om

en
tu

m
of

0.
9.

W
e

do
no

tu
se

dr
op

ou
t[

14
],

fo
llo

w
in

g
th

e
pr

ac
tic

e
in

[1
6]

.
In

te
st

in
g,

fo
rc

om
pa

ri
so

n
st

ud
ie

s
w

e
ad

op
tt

he
st

an
da

rd
10

-c
ro

p
te

st
in

g
[2

1]
.

Fo
r

be
st

re
su

lts
,

w
e

ad
op

t
th

e
fu

lly
-

co
nv

ol
ut

io
na

l
fo

rm
as

in
[4

1,
13

],
an

d
av

er
ag

e
th

e
sc

or
es

at
m

ul
tip

le
sc

al
es

(i
m

ag
es

ar
e

re
si

ze
d

su
ch

th
at

th
e

sh
or

te
r

si
de

is
in

{2
24

,2
56

,3
84

,4
80

,6
40

})
.

4.
E

xp
er

im
en

ts
4.

1.
Im

ag
eN

et
C

la
ss

ifi
ca

tio
n

W
e

ev
al

ua
te

ou
r

m
et

ho
d

on
th

e
Im

ag
eN

et
20

12
cl

as
si

fi-
ca

tio
n

da
ta

se
t[

36
]t

ha
tc

on
si

st
so

f1
00

0
cl

as
se

s.
T

he
m

od
el

s
ar

e
tr

ai
ne

d
on

th
e

1.
28

m
ill

io
n

tr
ai

ni
ng

im
ag

es
,a

nd
ev

al
u-

at
ed

on
th

e
50

k
va

lid
at

io
n

im
ag

es
.

W
e

al
so

ob
ta

in
a

fin
al

re
su

lt
on

th
e

10
0k

te
st

im
ag

es
,r

ep
or

te
d

by
th

e
te

st
se

rv
er

.
W

e
ev

al
ua

te
bo

th
to

p-
1

an
d

to
p-

5
er

ro
rr

at
es

.

Pl
ai

n
N

et
w

or
ks

.
W

e
fir

st
ev

al
ua

te
18

-l
ay

er
an

d
34

-l
ay

er
pl

ai
n

ne
ts

.T
he

34
-l

ay
er

pl
ai

n
ne

ti
s

in
Fi

g.
3

(m
id

dl
e)

.T
he

18
-l

ay
er

pl
ai

n
ne

ti
s

of
a

si
m

ila
r

fo
rm

.
Se

e
Ta

bl
e

1
fo

r
de

-
ta

ile
d

ar
ch

ite
ct

ur
es

.
T

he
re

su
lts

in
Ta

bl
e

2
sh

ow
th

at
th

e
de

ep
er

34
-l

ay
er

pl
ai

n
ne

th
as

hi
gh

er
va

lid
at

io
n

er
ro

r
th

an
th

e
sh

al
lo

w
er

18
-l

ay
er

pl
ai

n
ne

t.
To

re
ve

al
th

e
re

as
on

s,
in

Fi
g.

4
(l

ef
t)

w
e

co
m

-
pa

re
th

ei
rt

ra
in

in
g/

va
lid

at
io

n
er

ro
rs

du
ri

ng
th

e
tr

ai
ni

ng
pr

o-
ce

du
re

.
W

e
ha

ve
ob

se
rv

ed
th

e
de

gr
ad

at
io

n
pr

ob
le

m
-

th
e

4

MLP Lecture 8 Convolutional Networks (part 2) 19

http://arxiv.org/abs/1512.03385

Summary

Convolutional networks include local receptive fields, weight
sharing, and pooling leading

Backprop training can also be implemented as a
“reverse”convolutional layer (with the weight matrix rotated)

Implement using 4D tensors:

Inputs / Layer values: minibatch-size, number-fmaps, x, y
Weights: number-fmaps-in, number-fmaps-out, x, y

Reading:
Yoshua Bengio et al, Deep Learning (ch 9)
http://goodfeli.github.io/dlbook/contents/convnets.html

MLP Lecture 8 Convolutional Networks (part 2) 20

http://goodfeli.github.io/dlbook/contents/convnets.html

