Coursework 2

MLP Lecture 7

Coursework 2 - Overview and Objectives

@ Overview: Use a selection of the techniques covered in the
course so far to train accurate multi-layer networks for MNIST
classification

@ Objective: Assess your ability to design, implement and run a
set of experiments to answer specific research questions about
the models and methods covered in MLP

@ Choose three topics — one simpler, two more complex

e Simpler topics include exploration of: early stopping; L1 vs L2
regularization; number of layers; hidden unit transfer functions;
preprocessing of input data

e More complex topics: data augmentation;. convoltional layers;
skip connections / ResNets; Batch normalisation; ...

MLP Lecture 7 2

Coursework 2 - What to submit

@ Submit a report (PDF), your notebook, and python code.
@ Primarily assessed on the report — For each topic:

Clear statement of the research question investigated,;

Clear description of methods and algorithms;

Motivation for each experiment completed;

Quantitative results including relevant graphs;

Discussion of your results and any conclusions you have drawn.

o Please

Do submit everything online using submit

Don’t submit on paper to the ITO

Don’t submit everything in your mlpractical directory

Do start running the experiments for this coursework as
early as possible — Some of the experiments may take
significant compute time

MLP Lecture 7 3

Can we design a network

that takes account of
the image structure?

(And learns invariances...)

MLP Lecture 7 Convo

Convolutional Networks

Steve Renals

Machine Learning Practical — MLP Lecture 7
2 November 2016

MLP Lecture 7 5

Recap: Multi-layer network for MNIST

hidden layer 1 hidden layer 2 hidden layer 3
input layer

Z Bl output layer

o
T

(image from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chap6.html)

MLP Lecture 7 6

http://neuralnetworksanddeeplearning.com/chap6.html

How can we make this better?

On MNIST, we can get about 2% error (or even better) using
these kind of networks, but

@ They ignore the spatial (2-D) structure of the input images —
unroll each 28x28 image into a 784-D vector

@ Each hidden unit looks at the units in the layer below, so

pixels that are spatially separate are treated the same way as
pixels that are adjacent

@ There is no obvious way for networks to learn the same
features (e.g. edges) at different places in the input image

MLP Lecture 7 7

Convolutional networks

Convolutional networks address these issues through

@ Local receptive fields in which hidden units are connected to
local patches of the layer below,

@ Weight sharing which enables the construction of feature
maps,

@ Pooling which condenses information from the previous layer.

MLP Lecture 7 8

n
=
=
S
c
(]
o
o
<
O
N~
Lo
I
P —
o
>
A
c
(]
o
o
<
g
(&}
4+
O
(5
c
c
()
O
=
=
L

0000000000000 00000000000000
OO0O0000000000000000O0O0O0O000O00O00
OO0000000000000000000000000O00

OO0O0000000000000000O0O0O0O000O00O00
OO0000000000000000000000000O00
0000000000000 000000000000000
0000000000000 000000000000000
OO0O0000000000000000O0O0O0O000O00O00
OO0O0000000000000000O0O0O0O0O00O00O00
OO0000000000000000000000000O00
0000000000000 000000000000000
OO0O0000000000000000O0O0O0O0O00O00O00
OO0O0000000000000000O0O0O0O0O00O00O00
OO0000000000000000000000000O00

©OO0O0000000000000000O0O0O0O0O00O00O00
OO0000000000000000000000000O00
0000000000000 000000000000000
0000000000000 000000000000000
OO0O0000000000000000O0O0O0O0O00O00O00
OO0O0000000000000000O0O0O0O0O00O00O00
OO0000000000000000000000000O00
0000000000000 000000000000000
OO0O0000000000000000O0O0O0O0O00O00O00
©OO00000000000000000000000000)

Hidden 24x24

Input 28x28

MLP Lecture 7

n
=
=
S
c
(]
o
o
<
O
N~
Lo
I
P —
o
>
A
c
(]
o
o
<
-
(&}
4+
O
(5
c
c
()
O
=
=
L

Q000000000000 00000000000000)
OO0O00000000000000000O0O0O0000000
0000000000000 000000000000000

OO0O00000000000000000O0O0O0000000
0000000000000 000000000000000
000000000000 0000000000000000
000000000000 0000000000000000
OO0O00000000000000000O0O0O0000000
OO0O0000000000000O0000O0O0O0000000
0000000000000 000000000000000
000000000000 0000000000000000
OO0O0000000000000O0000O0O0O0000000
OO0O0000000000000O0000O0O0O0000000
0000000000000 000000000000000

OO0O0000000000000O0000O0O0O0000000
0000000000000 000000000000000
000000000000 0000000000000000
000000000000 0000000000000000
OO0O0000000000000O0000O0O0O0000000
OO0O0000000000000O0000O0O0O0000000
0000000000000 000000000000000
000000000000 0000000000000000
OO0O0000000000000O0000O0O0O0000000
©O00000000000000000000000000)

Hidden 24x24

Input 28x28

MLP Lecture 7

n
=
=
S
c
(]
o
o
<
O
N~
Lo
I
P —
o
>
A
c
(]
o
o
<
-
(&}
4+
O
(5
c
c
()
O
=
=
L

Q000000000000 00000000000000)
OO0O00000000000000000O0O0O0000000
0000000000000 000000000000000

OO0O00000000000000000O0O0O0000000
0000000000000 000000000000000
000000000000 0000000000000000
000000000000 0000000000000000
OO0O00000000000000000O0O0O0000000
OO0O0000000000000O0000O0O0O0000000
0000000000000 000000000000000
000000000000 0000000000000000
OO0O0000000000000O0000O0O0O0000000
OO0O0000000000000O0000O0O0O0000000
0000000000000 000000000000000

OO0O0000000000000O0000O0O0O0000000
0000000000000 000000000000000
000000000000 0000000000000000
000000000000 0000000000000000
OO0O0000000000000O0000O0O0O0000000
OO0O0000000000000O0000O0O0O0000000
0000000000000 000000000000000
000000000000 0000000000000000
OO0O0000000000000O0000O0O0O0000000
©O00000000000000000000000000)

Hidden 24x24

Input 28x28

MLP Lecture 7

Local receptive fields — 24x24 hidden units
00000
00000
00000
00000
00000

Input 28x28 Hidden 24x24

MLP Lecture 7

Local receptive fields — 24x24 hidden units

Input 28x28 Hidden 24x24

MLP Lecture 7 10

Local receptive fields — 24x24 hidden units

Input 28x28 Hidden 24x24

MLP Lecture 7 10

Local receptive fields — 24x24 hidden units

Input 28x28 Hidden 24x24

MLP Lecture 7 10

Local receptive fields

@ Each hidden unit is connected to a small (m x m) region of
the input space — the local receptive field

o If we have a d x d input space, then we have
(d —m+1) x (d — m+ 1) hidden unit space

@ Each hidden unit extracts a feature from “its” region of input
space

@ Here the receptive field “stride length” is 1, it could be larger

MLP Lecture 7 11

Shared weights

@ Constrain each hidden unit h; j to extract the same feature by
sharing weights across the receptive fields

@ For hidden unit h;

m—1m-1

h,‘J = sigmoid(z Z Wi ¢ Xit+k j+¢ + b)
k=0 ¢=0

where wy , are elements of the shared m x m weight matrix
w, b is the shared bias, and x;_ 4 j4/ is the input at i + k,j 4 ¢

@ We use k and / to index into the receptive field, whose top
left corner is at x; ;

MLP Lecture 7 12

Shared weights & Receptive Fields

——p
x(ij) x(i,j+4)

h(i.j)

Input 28x28 24x24 Feature Map

MLP Lecture 7 13

@ Local receptive fields with shared weights result in a feature
map
e a map showing where the feature corresponding to the shared
weight matrix (kernel) occurs in the image
@ Feature map encodes translation invariance
e extract the same features irrespective of where an image is
located in the input
o Multiple feature maps

e a hidden layer can consist of F different feature maps — in this
case F x 24 x 24 units in total

MLP Lecture 7 14

Feature Maps

Input 28x28 24x24 Feature Map

MLP Lecture 7 15

Feature Maps

Input 28x28 2x24x24 Feature Maps

MLP Lecture 7

Feature Maps

Input 28x28 3x24x24 Feature Maps

MLP Lecture 7

Weights and Connections

Consider an MNIST hidden layer with feature maps using a 5x5
kernels (resulting in 24x24 feature maps):

@ Number of connections per feature map:
24 x 24 x 5 x b = 14,400 connections
24 x 24 = 576 biases

@ But since weights are shared within a feature map, we have
5 x 5 = 25 weights
1 bias

Consider the case where we have 40 feature maps. We will have
@ 1,000 (25%40) weights (+ 40 biases)
@ but 576,000 (+ 23,040) connections

In comparison a 100 hidden unit MLP from the first coursework
has 784 x 100 + 100 = 78, 500 input-hidden weights

MLP Lecture 7 16

Learning image kernels

000
Identity 010
000
10 -1
00 0
-10 1
0 10
Edge detection 1 -4 1
0 10
-1 -1 -1
-1 8 -1
-1 -1 -1
0 -1 0
Sharpen -1 5 -1
0 -1 0

https://en.wikipedia.org/wiki/

Kernel_(image_processing)

MLP Lecture 7

@ Image kernels have

been designed and
used for feature
extraction in image
processing (e.g. edge
detection)

However, we can
learn multiple kernel
functions (feature
maps) by optimising
the network cost
function

Automating feature
engineering

https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Kernel_(image_processing)

Convolutional Layer

@ This type of feature map is often called a Convolutional layer
@ We can write the feature map hidden unit equation:

m m

hij = Sigmoid(z Z Wk, (Xitk j+¢ T b)
k=1 /(=1

h = sigmoid(w ® x + b)
® is a cross-correlation and is closely related to a convolution
@ In signal processing a 2D convolution is written as

m m
H;j = sigmoid(z Z Vi e Xi—k j—t + b)
k=1 (=1

H = sigmoid(v % x + b)

o If we “flip" (reflect horizontally and vertically) w
(cross-correlation) then we obtain v (convolution)

MLP Lecture 7 18

Convolution vs Cross-correlation

@ Cross-correlation is often referred to as convolution in deep
learning....

@ This is not problematic since the specific properties of
convolution but not of cross-correlation (commutativity and
associativity) are rarely (if ever) required for deep learning

@ In machine learning the network learns the kernel appropriate
to its orientation — so if convolution is implemented with a
flipped kernel, it will learn that it is a flipped implementation

@ So it is OK to use an efficient (flipped) implementation of
convolution for convolutional layers

MLP Lecture 7 19

Pooling (subsampling)

00

12x12
Pooling Layer

24x24 Feature Map

MLP Lecture 7 20

@ Pooling or subsampling takes a feature map and reduces it in
size — e.g. by transforming a set of 2x2 regions to a single unit
@ Pooling functions

e Max-pooling — takes the maximum value of the units in the
region (c.f. maxout)
o L,-pooling — take the L, norm of the units in the region:

1/p

W= >

icregion
o Average- / Sum-pooling — takes the average / sum value of
the pool

@ Information reduction — pooling removes precise location
information for a feature

@ Apply pooling to each feature map separately

MLP Lecture 7 pal

Putting it together — convolutional+pooling layer

00000

00000
oo
©O)
S
)

[e1e]
1533

3x12x12 Pooling Layers

Input 28x28 3x24x24 Feature Maps

MLP Lecture 7 22

ConvNet — Convolutional Network

3x12x12 Pooling Layers Layer

Input 28x28 3x24x24 Feature Maps

Simple ConvNet:
@ Convolutional layer with max-pooling
e Final fully connected hidden layer (no sharing weight)
@ Softmax output layer

o With 20 feature maps and a final hidden layer of 100 hidden
unit:
20x (5x5+4+1)4+20x 12 x 12 x 100+ 100+ 100 x 10+ 10 =
289, 630 weights

MLP Lecture 7 px}

Multiple input images

o If we have a colour image, each pixel is defined by 3 RGB
values — so our input is in fact 3 images (one R, one G, and
one B)

o If we want stack convolutional layers, then the second layer
needs to take input from all the feature maps in the first layer

@ Local receptive fields across multiple input images

@ In a second convolutional layer (C2) on top of 20 12 x 12
feature maps, each unit will look at 20 x 5 x 5 input
units(combining 20 receptive fields each in the same spatial
location)

@ Typically do not tie weights across feature maps, so each unit
in C2 has 20 x 5 x 5 = 500 weights, plus a bias. (Assuming a
5 x 5 kernel size)

MLP Lecture 7 24

Stacking convolutional layers

it
Bxaxd
Pooling Layers
6xBxBFeature Maps

3x12x12 Pooling Layers

Input 28x28 3x24x24 Feature Maps

MLP Lecture 7

Example: LeNet5 (LeCun et al, 1997)

C1: feature maps
INFUT 6@28x28

|
| Fu\lcmAemnn ‘ ‘Gaussian connections
Convalutions Subsampling Convolutions ~ Subsampling Full connection

MLP Lecture 7 26

MNIST Results (1997)

Linear |----12.0 ——{->
[deslant] Linear |-——- 8.4 -—
Pairwise |-——- 76—

K-NN Euclidean

[deslant] K- NN Euclidean ——
I E—
40 PCA + quadralic
1000 RBF + linear 6
[16x16] Tangent Distance | EEEG— -
SVMpoly 4 |

RS-SVM poly 5 —
[dist] V SVMpoly o |EEE—— O

26x28-300-10

[dist] 28x28-300-10
[deslant] 20x20-300-10
268x28-1000-10

|dist] 28+28-1000-10
28x28-300-100-10
[dist] 28x78-300-100-10
28x28-500-150-10
{dist] 28x28-500-150-10

[16x16] LeNet—1
LeNet-4

LeNet—4 / Local
LeNet-4 / K-NN
LeNet-5

[dist] LeNet-5

[dist] Boosted LeNet-4

0 05 1 15 2 25 3 35 4 4.5 5

LP Lecture 7 27

nal Netwol

Training Convolutional Networks

@ Train convolutional networks with a straightforward but
careful application of backprop / SGD

@ Exercise: prior to the next lecture, write down the gradients
for the weights and biases of the feature maps in a
convolutional network. Remember to take account of weight
sharing.

@ Next lecture: implementing convolutional networks: how to
deal with local receptive fields and tied weights, computing
the required gradients...

MLP Lecture 7 28

@ Convolutional networks include local receptive fields, weight
sharing, and pooling leading to:

o Modelling the spatial structure

e Translation invariance

o Local feature detection

@ Reading:

Michael Nielsen, Neural Networks and Deep Learning (ch 6)
http://neuralnetworksanddeeplearning.com/chap6.html
Yann LeCun et al, “Gradient-Based Learning Applied to
Document Recognition”, Proc IEEE, 1998.
http://dx.doi.org/10.1109/5.726791
lan Goodfellow, Yoshua Bengio & Aaron Courville,
Deep Learning (ch 9)
http://www.deeplearningbook.org/contents/convnets.html

MLP Lecture 7 29

http://neuralnetworksanddeeplearning.com/chap6.html
http://dx.doi.org/10.1109/5.726791
http://www.deeplearningbook.org/contents/convnets.html

