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Single layer network

Single-layer network, 1 output, 2 inputs
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Geometric interpretation

Single-layer network, 1 output, 2 inputs
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Bishop, sec 3.1
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Example data (three classes)
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Single layer network

Single-layer network, 3 outputs, 2 inputs
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Plot of Decision regions

layer networks are limited to linear classification boundaries

Single
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Single layer network trained on MNIST Digits

10 Outputs

QOPEOOHOOE®®

784x10 weight matrix

OO0 0000

784 Inputs

Output weights define a “template” for each class

28x28
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Hinton Diagrams

Visualise the weights for class k

400 (20x20) inputs
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Hinton diagram for single layer network trained on MNIST

@ Weights for each class act as a “discriminative template”

@ Inner product of class weights and input to measure closeness
to each template

@ Classify to the closest template (maximum value output)
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From templates to features

00000000000 00020000

@ Good classification needs to cope with the variability of real
data: scale, skew, rotation, translation, ....

@ Very difficult to do with a single template per class

@ Could have multiple templates per task... this will work, but
we can do better
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From templates to features

00000000000 00020000

@ Good classification needs to cope with the variability of real
data: scale, skew, rotation, translation, ....

@ Very difficult to do with a single template per class

@ Could have multiple templates per task... this will work, but
we can do better

Use features rather than templates

0_"' ﬁL 7

(images from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chapl.html)
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Incorporating features in neural network architecture

@ Layered processing: inputs - features - classification
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@ How to obtain features - learning!

MLP Lecture 3 14



Incorporating features in neural network architecture

@ Layered processing: inputs - features - classification

OOOEROWEPOE®

@ How to obtain features - learning!
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Incorporating features in neural network architecture

@ Layered processing: inputs - features - classification
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@ How to obtain features - learning!
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Multi-layer network
Outputs
Softmax
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Multi-layer network for MNIST

hidden layer

(n = 15 neuarons)

input layer
(784 neurons)

(image from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chapl.html)
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Training MLPs: Credit assignment

Hidden units make training the weights more complicated,
since the hidden units affect the error function indirectly via
all the outputs

The Credit assignment problem: what is the “error” of a
hidden unit? how important is input-hidden weight Wj(,-l) to
output unit k?

Solution: Gradient descent — requires derivatives of the error
with respect to each weight

Algorithm: back-propagation of error (backprop)

Backprop gives a way to compute the derivatives. These
derivatives are used by an optimisation algorithm (e.g.
gradient descent) to train the weights.
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Training output weights

Y1
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Training output weights

(2)
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Hidden units
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Training MLPs: Error function and required gradients

@ Cross-entropy error function:

C
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k=1

e Required gradients: 2£° OE” OE" OE"
a & owy: ow!) ab? obl)

e Gradient for hidden-to-output weights similar to
single-layer network:
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Back-propagation of error: hidden unit error signal
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Back-propagation of error: hidden unit error signal

Hidden units

(5;1) = (Z (5;2)11)@‘) ]Lj(l - hj)
14

wh
Ji n
OE" _ ),

auéi) /

Xi

MLP Lecture 3 22



Training MLPs: Input-to-hidden weights
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Jj

To compute (51(1) = 8E”/8aj(-1), the error signal for hidden unit j,

we must sum over all the output units’ contributions to 5}1):
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Training MLPs: Gradients
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@ Exercise: write down expressions for the gradients w.r.t. the
biases
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Back-propagation of error: hidden unit error signal
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Back-propagation of error: hidden unit error signal
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Back-propagation of error: hidden unit error signal
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Back-propagation of error

@ The back-propagation of error algorithm is summarised as
follows:

@ Apply an input vectors from the training set, x, to the network
and forward propagate to obtain the output vector y

@ Using the target vector t compute the error E”

@ Evaluate the error signals 5,&2) for each output unit

© Evaluate the error signals 5}1) for each hidden unit using
back-propagation of error

@ Evaluate the derivatives for each training pattern

@ Back-propagation can be extended to multiple hidden layers,
in each case computing the 6()s for the current layer as a
weighted sum of the §(t1)s of the next layer
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Training with multiple hidden layers
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@ Understanding what single-layer networks compute
@ How multi-layer networks allow feature computation
@ Training multi-layer networks using back-propagation of error
@ Reading:
Michael Nielsen, chapters 1 & 2 of Neural Networks and Deep

Learning
http://neuralnetworksanddeeplearning.com/

Chris Bishop, Sections 3.1, 3.2, and Chapter 4 of Neural
Networks for Pattern Recognition
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