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What Do
Single Layer

Neural Networks Do?
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Single layer network

Single-layer network, 1 output, 2 inputs
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Geometric interpretation

Single-layer network, 1 output, 2 inputs
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Bishop, sec 3.1
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Example data (three classes)
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Single layer network

Single-layer network, 3 outputs, 2 inputs
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Classification regions with single-layer network
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Plot of Decision regions

Single-layer networks are limited to linear classification boundaries
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Single layer network trained on MNIST Digits

0
10 Outputs

784 Inputs

784x10 weight matrix

1 2 3 4 5 6 7 8 9

. . . .

28x28

Output weights define a “template” for each class
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Hinton Diagrams

Visualise the weights for class k

. . . .
400 (20x20) inputs
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Hinton diagram for single layer network trained on MNIST

Weights for each class act as a “discriminative template”
Inner product of class weights and input to measure closeness
to each template
Classify to the closest template (maximum value output)
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2 3
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Multi-Layer Networks
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From templates to features

Good classification needs to cope with the variability of real
data: scale, skew, rotation, translation, ....

Very difficult to do with a single template per class

Could have multiple templates per task... this will work, but
we can do better

Use features rather than templates

(images from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chap1.html)
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Incorporating features in neural network architecture

Layered processing: inputs - features - classification

0 1 2 3 4 5 6 7 8 9

. . . .

. . . .. . . .

How to obtain features - learning!
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Incorporating features in neural network architecture

Layered processing: inputs - features - classification

0 1 2 3 4 5 6 7 8 9

. . . .

. . . .. . . .

How to obtain features - learning!
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Multi-layer network
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Multi-layer network for MNIST

(image from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chap1.html)
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Training MLPs: Credit assignment

Hidden units make training the weights more complicated,
since the hidden units affect the error function indirectly via
all the outputs

The Credit assignment problem: what is the “error” of a

hidden unit? how important is input-hidden weight w
(1)
ji to

output unit k?

Solution: Gradient descent – requires derivatives of the error
with respect to each weight

Algorithm: back-propagation of error (backprop)

Backprop gives a way to compute the derivatives. These
derivatives are used by an optimisation algorithm (e.g.
gradient descent) to train the weights.
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Training output weights
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Training output weights

Outputs

Hidden units

xi

w(2)
1 j w(2)

ℓ j

w(1)
ji

yKy�y1

w(2)
K j

hj

�
(2)
K

�
(2)
`�

(2)
1

@En

@w
(2)
kj

= �
(2)
k h

(1)
j

MLP Lecture 3 Multi-layer networks 20



Training MLPs: Error function and required gradients

Cross-entropy error function:

En = −
C∑

k=1

tnk ln ynk
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Back-propagation of error: hidden unit error signal
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Back-propagation of error: hidden unit error signal
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Training MLPs: Input-to-hidden weights
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Training MLPs: Gradients
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Back-propagation of error: hidden unit error signal
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Back-propagation of error: hidden unit error signal
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Back-propagation of error

The back-propagation of error algorithm is summarised as
follows:

1 Apply an input vectors from the training set, x, to the network
and forward propagate to obtain the output vector y

2 Using the target vector t compute the error E n

3 Evaluate the error signals δ
(2)
k for each output unit

4 Evaluate the error signals δ
(1)
j for each hidden unit using

back-propagation of error
5 Evaluate the derivatives for each training pattern

Back-propagation can be extended to multiple hidden layers,
in each case computing the δ(`)s for the current layer as a
weighted sum of the δ(`+1)s of the next layer
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Training with multiple hidden layers
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Summary

Understanding what single-layer networks compute

How multi-layer networks allow feature computation

Training multi-layer networks using back-propagation of error

Reading:
Michael Nielsen, chapters 1 & 2 of Neural Networks and Deep
Learning
http://neuralnetworksanddeeplearning.com/

Chris Bishop, Sections 3.1, 3.2, and Chapter 4 of Neural
Networks for Pattern Recognition
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