
Recurrent Networks

Steve Renals

Machine Learning Practical — MLP Lecture 9 (extra)
4 December 2015

MLP Lecture 9 (extra) Recurrent Networks 1



Introduction

Modelling sequential data

Recurrent hidden unit connections

Training RNNs: Back-propagation through time

LSTMs

Examples (speech and language)

MLP Lecture 9 (extra) Recurrent Networks 2



Sequential Data

t=0

t=1

t=2

t=3

. . . . . .

x1 x2 x3

Modelling sequential data
with time dependences
between feature vectors

MLP Lecture 9 (extra) Recurrent Networks 3



Sequential Data

t-2

x1 x2 x3 x1 x2 x3

t-1

x1 x2 x3

t

output

hidden

input

2 frames of context

Modelling sequential data
with time dependences
between feature vectors

Can model fixed context
with a feed-forward
network with previous time
input vectors added to the
network input (in signal
processing this is called FIR
– finite input response)

MLP Lecture 9 (extra) Recurrent Networks 4



Sequential Data

x1 x2 x3

t

output

recurrent
hidden

input

Modelling sequential data
with time dependences
between feature vectors

Can model fixed context
with a feed-forward
network with previous time
input vectors added to the
network input (in signal
processing this is called FIR
– finite impulse response)

Model sequential inputs
using recurrent connections
to learn a time-dependent
state (in signal processing
this is called IIR – infinite
impulse response)

MLP Lecture 9 (extra) Recurrent Networks 5



Recurrent networks

Can think of recurrent networks in terms of the dynamics of the
recurrent hidden state

Settle to a fixed point – stable representation for a sequence
(e.g. machine translation)

Regular oscillation (“limit cycle”) – learn some kind of
repetition

Chaotic dynamics (non-repetitive) – theoretically interesting
(“computation at the edge of chaos”)

Useful behaviours of recurrent networks:

Recurrent state as memory – remember things for
(potentially) an infinite time

Recurrent state as information compression – compress a
sequence into a state representation

MLP Lecture 9 (extra) Recurrent Networks 6



Simplest recurrent network

yk(t) = softmax

(
H∑
r=0

w
(2)
kr hr (t)

)

hj(t) = sigmoid


d∑

s=0

w
(1)
js xs(t) +

H∑
r=0

w
(R)
jr hr (t − 1)︸ ︷︷ ︸

Recurrent part



Hidden (t)

Output (t)

Input (t) Hidden (t-1)

w(1)

w(2)

w(R)

MLP Lecture 9 (extra) Recurrent Networks 7



Recurrent network unfolded in time

Hidden (t)

Output (t)

Input (t)

Hidden (t-1)

w(1)

w(2)

w(R)

Hidden (t+1)

Input (t-1)

Output (t-1)

Input (t+1)

Output (t+1)

w(2)w(2)

w(1)w(1)

w(R)
w(R) w(R)

An RNN for a sequence of T inputs can be viewed as a deep
T -layer network with shared weights

We can train an RNN by doing backprop through this
unfolded network, making sure we share the weights
Weight sharing

if two weights are constrained to be equal (w1 = w2) then they
will stay equal if the weight changes are equal
(∂E/∂w1 = ∂E/∂w2)
achieve this by updating with (∂E/∂w1 + ∂E/∂w2) (cf Conv
Nets)

MLP Lecture 9 (extra) Recurrent Networks 8



Back-propagation through time (BPTT)

We can train a network by unfolding and back-propagating
through time, summing the derivatives for each weight as we
go through the sequence

More efficiently, run as a recurrent network

cache the unit outputs at each timestep
cache the output errors at each timestep
then backprop from the final timestep to zero, computing the
derivatives at each step
compute the weight updates by summing the derivatives across
time

Expensive – backprop for a 1,000 item sequence equivalent to
a 1,000-layer feed-forward network

Truncated BPTT – backprop through just a few time steps
(e.g. 20)

MLP Lecture 9 (extra) Recurrent Networks 9



Vanishing and exploding gradients

BPTT involves taking the product of many gradients (as in a
very deep network) – this can lead to vanishing (component
gradients less than 1) or exploding (greater than 1) gradients

This can prevent effective training

Modified optimisation algorithms

RMSProp (normalise the gradient for each weight by average
of it magnitude, learning rate for each weight)
Hessian-free – an approximation to second-order approaches
which use curvature information

Modified hidden unit transfer functions
Long short term memory (LSTM)

Linear self-recurrence for each hidden unit (long-term memory)
Gates - dynamic weights which are a function of the inputs

ReLUs

MLP Lecture 9 (extra) Recurrent Networks 10



LSTM v1

I(t) H(t-1)

H(t)

Basic
Sigmoid

Unit

MLP Lecture 9 (extra) Recurrent Networks 11



LSTM v1

I(t) H(t-1)

H(t)

1

Linear
Recurrence

MLP Lecture 9 (extra) Recurrent Networks 11



LSTM v1

I(t) H(t-1)

H(t)

1

Output
Gate

Input
Gate

S Hochreiter and J Schmidhuber (1997). “Long Short-Term
Memory”, Neural Computation, 9:1735–1780.

MLP Lecture 9 (extra) Recurrent Networks 11



LSTM v2

I(t) H(t-1)

H(t)

Forget
Gate

FA Gers et al (2000). “Learning to Forget: Continual Prediction
with LSTM”, Neural Computation, 12:2451–2471.

MLP Lecture 9 (extra) Recurrent Networks 12



LSTM v3

I(t) H(t-1)

H(t)

C(t)

C(t-1)

Peephole
Connections

MLP Lecture 9 (extra) Recurrent Networks 13



LSTM equations

2. LSTM ARCHITECTURES

In the standard architecture of LSTM networks, there are an input
layer, a recurrent LSTM layer and an output layer. The input layer
is connected to the LSTM layer. The recurrent connections in the
LSTM layer are directly from the cell output units to the cell input
units, input gates, output gates and forget gates. The cell output units
are connected to the output layer of the network. The total number
of parameters W in a standard LSTM network with one cell in each
memory block, ignoring the biases, can be calculated as follows:

W = nc ⇥ nc ⇥ 4 + ni ⇥ nc ⇥ 4 + nc ⇥ no + nc ⇥ 3

where nc is the number of memory cells (and number of memory
blocks in this case), ni is the number of input units, and no is the
number of output units. The computational complexity of learning
LSTM models per weight and time step with the stochastic gradient
descent (SGD) optimization technique is O(1). Therefore, the learn-
ing computational complexity per time step is O(W ). The learn-
ing time for a network with a relatively small number of inputs is
dominated by the nc ⇥ (nc + no) factor. For the tasks requiring a
large number of output units and a large number of memory cells to
store temporal contextual information, learning LSTM models be-
come computationally expensive.

As an alternative to the standard architecture, we propose two
novel architectures to address the computational complexity of
learning LSTM models. The two architectures are shown in the
same Figure 1. In one of them, we connect the cell output units to
a recurrent projection layer which connects to the cell input units
and gates for recurrency in addition to network output units for the
prediction of the outputs. Hence, the number of parameters in this
model is nc ⇥nr ⇥ 4+ni ⇥nc ⇥ 4+nr ⇥no +nc ⇥nr +nc ⇥ 3,
where nr is the number of units in the recurrent projection layer. In
the other one, in addition to the recurrent projection layer, we add
another non-recurrent projection layer which is directly connected to
the output layer. This model has nc ⇥nr ⇥4+ni ⇥nc ⇥4+(nr +
np) ⇥ no + nc ⇥ (nr + np) + nc ⇥ 3 parameters, where np is the
number of units in the non-recurrent projection layer and it allows
us to increase the number of units in the projection layers without
increasing the number of parameters in the recurrent connections
(nc ⇥ nr ⇥ 4). Note that having two projection layers with regard
to output units is effectively equivalent to having a single projection
layer with nr + np units.

An LSTM network computes a mapping from an input sequence
x = (x1, ..., xT ) to an output sequence y = (y1, ..., yT ) by cal-
culating the network unit activations using the following equations
iteratively from t = 1 to T :

it = �(Wixxt + Wimmt�1 + Wicct�1 + bi) (1)
ft = �(Wfxxt + Wmfmt�1 + Wcfct�1 + bf ) (2)

ct = ft � ct�1 + it � g(Wcxxt + Wcmmt�1 + bc) (3)
ot = �(Woxxt + Wommt�1 + Wocct + bo) (4)

mt = ot � h(ct) (5)
yt = Wymmt + by (6)

where the W terms denote weight matrices (e.g. Wix is the matrix
of weights from the input gate to the input), the b terms denote bias
vectors (bi is the input gate bias vector), � is the logistic sigmoid
function, and i, f , o and c are respectively the input gate, forget gate,
output gate and cell activation vectors, all of which are the same size
as the cell output activation vector m, � is the element-wise product

in
pu

t

g ⇥ ct�1 h

⇥

⇥

it

ft

ct

ot re
cu

rr
en

t
pr

oj
ec

tio
n

ou
tp

ut

xt

mt

pt

rt

rt�1

yt

memory blocks

Fig. 1. LSTM based RNN architectures with a recurrent projection
layer and an optional non-recurrent projection layer. A single mem-
ory block is shown for clarity.

of the vectors and g and h are the cell input and cell output activation
functions, generally tanh.

With the proposed LSTM architecture with both recurrent and
non-recurrent projection layer, the equations are as follows:

it = �(Wixxt + Wirrt�1 + Wicct�1 + bi) (7)
ft = �(Wfxxt + Wrfrt�1 + Wcfct�1 + bf ) (8)

ct = ft � ct�1 + it � g(Wcxxt + Wcrrt�1 + bc) (9)
ot = �(Woxxt + Worrt�1 + Wocct + bo) (10)

mt = ot � h(ct) (11)
rt = Wrmmt (12)
pt = Wpmmt (13)

yt = Wyrrt + Wyppt + by (14)
(15)

where the r and p denote the recurrent and optional non-recurrent
unit activations.

2.1. Implementation

We choose to implement the proposed LSTM architectures on multi-
core CPU on a single machine rather than on GPU. The decision
was based on CPU’s relatively simpler implementation complexity
and ease of debugging. CPU implementation also allows easier dis-
tributed implementation on a large cluster of machines if the learn-
ing time of large networks becomes a major bottleneck on a single
machine [14]. For matrix operations, we use the Eigen matrix li-
brary [15]. This templated C++ library provides efficient implemen-
tations for matrix operations on CPU using vectorized instructions
(SIMD – single instruction multiple data). We implemented acti-
vation functions and gradient calculations on matrices using SIMD
instructions to benefit from parallelization.

We use the asynchronous stochastic gradient descent (ASGD)
optimization technique. The update of the parameters with the gra-
dients is done asynchronously from multiple threads on a multi-core
machine. Each thread operates on a batch of sequences in parallel
for computational efficiency – for instance, we can do matrix-matrix
multiplications rather than vector-matrix multiplications – and for
more stochasticity since model parameters can be updated from mul-
tiple input sequence at the same time. In addition to batching of se-
quences in a single thread, training with multiple threads effectively

MLP Lecture 9 (extra) Recurrent Networks 14



Example 1: speech recognition with recurrent networks

time (ms)

fre
q (

Hz
)

0 200 400 600 800 1000 1200 1400
0

2000

4000

6000

8000

Recurrent
Neural
Network

Speech
Acoustics

Phoneme Probabilities

T Robinson et al (1996). “The use of recurrent networks in
continuous speech recognition”, in Automatic Speech and Speaker
Recognition Advanced Topics (Lee et al (eds)), Kluwer, 233–258.

MLP Lecture 9 (extra) Recurrent Networks 15



Example 2: speech recognition with stacked LSTMs

in
pu

t

g cell h

it

ft

ct

ot

re
cu

rr
en

t

ou
tp

ut

xt

mt

rt

rt�1

yt

LSTM memory blocks

Figure 1: LSTMP RNN architecture. A single memory block is
shown for clarity.

memory cell. The output gate controls the output flow of cell
activations into the rest of the network. Later, the forget gate
was added to the memory block [18]. This addressed a weak-
ness of LSTM models preventing them from processing contin-
uous input streams that are not segmented into subsequences.
The forget gate scales the internal state of the cell before adding
it as input to the cell through the self-recurrent connection of
the cell, therefore adaptively forgetting or resetting the cell’s
memory. In addition, the modern LSTM architecture contains
peephole connections from its internal cells to the gates in the
same cell to learn precise timing of the outputs [19].

An LSTM network computes a mapping from an input
sequence x = (x1, ..., xT ) to an output sequence y =
(y1, ..., yT ) by calculating the network unit activations using
the following equations iteratively from t = 1 to T :

it = �(Wixxt + Wimmt�1 + Wicct�1 + bi) (1)
ft = �(Wfxxt + Wfmmt�1 + Wfcct�1 + bf ) (2)

ct = ft � ct�1 + it � g(Wcxxt + Wcmmt�1 + bc) (3)
ot = �(Woxxt + Wommt�1 + Wocct + bo) (4)

mt = ot � h(ct) (5)
yt = �(Wymmt + by) (6)

where the W terms denote weight matrices (e.g. Wix is the ma-
trix of weights from the input gate to the input), Wic, Wfc, Woc

are diagonal weight matrices for peephole connections, the b
terms denote bias vectors (bi is the input gate bias vector), � is
the logistic sigmoid function, and i, f , o and c are respectively
the input gate, forget gate, output gate and cell activation vec-
tors, all of which are the same size as the cell output activation
vector m, � is the element-wise product of the vectors, g and h
are the cell input and cell output activation functions, generally
and in this paper tanh, and � is the network output activation
function, softmax in this paper.

2.2. Deep LSTM

As with DNNs with deeper architectures, deep LSTM RNNs
have been successfully used for speech recognition [11, 17, 2].
Deep LSTM RNNs are built by stacking multiple LSTM lay-
ers. Note that LSTM RNNs are already deep architectures in
the sense that they can be considered as a feed-forward neu-
ral network unrolled in time where each layer shares the same
model parameters. One can see that the inputs to the model
go through multiple non-linear layers as in DNNs, however the
features from a given time instant are only processed by a sin-
gle nonlinear layer before contributing the output for that time

input

LSTM

output

(a) LSTM

input

LSTM

LSTM

output

(b) DLSTM

input

LSTM

recurrent

output

(c) LSTMP

input

LSTM

recurrent

LSTM

recurrent

output

(d) DLSTMP

Figure 2: LSTM RNN architectures.

instant. Therefore, the depth in deep LSTM RNNs has an ad-
ditional meaning. The input to the network at a given time step
goes through multiple LSTM layers in addition to propagation
through time and LSTM layers. It has been argued that deep
layers in RNNs allow the network to learn at different time
scales over the input [20]. Deep LSTM RNNs offer another
benefit over standard LSTM RNNs: They can make better use
of parameters by distributing them over the space through mul-
tiple layers. For instance, rather than increasing the memory
size of a standard model by a factor of 2, one can have 4 lay-
ers with approximately the same number of parameters. This
results in inputs going through more non-linear operations per
time step.

2.3. LSTMP - LSTM with Recurrent Projection Layer

The standard LSTM RNN architecture has an input layer, a re-
current LSTM layer and an output layer. The input layer is con-
nected to the LSTM layer. The recurrent connections in the
LSTM layer are directly from the cell output units to the cell
input units, input gates, output gates and forget gates. The cell
output units are also connected to the output layer of the net-
work. The total number of parameters N in a standard LSTM
network with one cell in each memory block, ignoring the bi-
ases, can be calculated as N = nc ⇥ nc ⇥ 4 + ni ⇥ nc ⇥ 4 +
nc ⇥ no + nc ⇥ 3, where nc is the number of memory cells
(and number of memory blocks in this case), ni is the number
of input units, and no is the number of output units. The com-
putational complexity of learning LSTM models per weight and
time step with the stochastic gradient descent (SGD) optimiza-
tion technique is O(1). Therefore, the learning computational
complexity per time step is O(N). The learning time for a net-
work with a moderate number of inputs is dominated by the
nc ⇥ (4 ⇥ nc + no) factor. For the tasks requiring a large
number of output units and a large number of memory cells to
store temporal contextual information, learning LSTM models
become computationally expensive.

As an alternative to the standard architecture, we proposed
the Long Short-Term Memory Projected (LSTMP) architec-
ture to address the computational complexity of learning LSTM
models [3]. This architecture, shown in Figure 1 has a separate
linear projection layer after the LSTM layer. The recurrent con-
nections now connect from this recurrent projection layer to the
input of the LSTM layer. The network output units are con-
nected to this recurrent layer. The number of parameters in this
model is nc⇥nr⇥4+ni⇥nc⇥4+nr⇥no+nc⇥nr +nc⇥3,

339

H Sak et al (2014). “Long Short-Term Memory based Recurrent
Neural Network Architectures for Large Scale Acoustic Modelling”,
Interspeech.

MLP Lecture 9 (extra) Recurrent Networks 16



Example 3: recurrent network language models

T Mikolov et al (2010). “Recurrent Neural Network Based
Language Model”, Interspeech

MLP Lecture 9 (extra) Recurrent Networks 17



Example 4: recurrent encoder-decoder

Machine translation

I Sutskever et al (2014).
“Sequence to Sequence
Learning with Neural
Networks”, NIPS.

K Cho et al (2014). “Learning
Phrase Representations using
RNN Encoder-Decoder for
Statistical Machine
Translation”, EMNLP.

MLP Lecture 9 (extra) Recurrent Networks 18



Summary

RNNs can model sequences

Unfolding an RNN gives a deep feed-forward network

Back-propagation through time

LSTM

RNNs are useful for more than sequence learning! – see recent
Google DeepMind work on using RNNs to locate items of
interest in images

More on recurrent networks next semester in NLU (and 1-2
lectures in ASR and MT)

MLP Lecture 9 (extra) Recurrent Networks 19


