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Introduction

Modelling sequential data

Recurrent hidden unit connections

Training RNNs: Back-propagation through time
LSTMs

Examples (speech and language)
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Sequential Data
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Sequential Data
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Sequential Data

recurrent
hidden

oot O OO

input O O

x1

x2
t

OO0

x3

@ Modelling sequential data

with time dependences
between feature vectors

Can model fixed context
with a feed-forward
network with previous time
input vectors added to the
network input (in signal
processing this is called FIR
— finite impulse response)

Model sequential inputs
using recurrent connections
to learn a time-dependent
state (in signal processing
this is called IR — infinite
impulse response)
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Recurrent networks

Can think of recurrent networks in terms of the dynamics of the
recurrent hidden state

@ Settle to a fixed point — stable representation for a sequence
(e.g. machine translation)

@ Regular oscillation (“limit cycle”) — learn some kind of
repetition

e Chaotic dynamics (non-repetitive) — theoretically interesting
(“computation at the edge of chaos”)

Useful behaviours of recurrent networks:

@ Recurrent state as memory — remember things for
(potentially) an infinite time

@ Recurrent state as information compression — compress a
sequence into a state representation
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Simplest recurrent network
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Recurrent network unfolded in time
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@ An RNN for a sequence of T inputs can be viewed as a deep
T-layer network with shared weights
@ We can train an RNN by doing backprop through this
unfolded network, making sure we share the weights
o Weight sharing
o if two weights are constrained to be equal (w; = w,) then they
will stay equal if the weight changes are equal
(OE/Owr = OE [Ows)
o achieve this by updating with (0E /0wy + OE /Ows) (cf Conv
Nets)
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Back-propagation through time (BPTT)

o We can train a network by unfolding and back-propagating
through time, summing the derivatives for each weight as we
go through the sequence

@ More efficiently, run as a recurrent network

e cache the unit outputs at each timestep

e cache the output errors at each timestep

e then backprop from the final timestep to zero, computing the
derivatives at each step

e compute the weight updates by summing the derivatives across
time

@ Expensive — backprop for a 1,000 item sequence equivalent to
a 1,000-layer feed-forward network

@ Truncated BPTT — backprop through just a few time steps
(e.g. 20)
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Vanishing and exploding gradients

@ BPTT involves taking the product of many gradients (as in a
very deep network) — this can lead to vanishing (component
gradients less than 1) or exploding (greater than 1) gradients

@ This can prevent effective training
@ Modified optimisation algorithms
o RMSProp (normalise the gradient for each weight by average
of it magnitude, learning rate for each weight)
o Hessian-free — an approximation to second-order approaches
which use curvature information
@ Modified hidden unit transfer functions
o Long short term memory (LSTM)
o Linear self-recurrence for each hidden unit (long-term memory)
o Gates - dynamic weights which are a function of the inputs

o RelUs
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LSTM vl
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Recurrence
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LSTM vl
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S Hochreiter and J Schmidhuber (1997). “Long Short-Term
Memory", Neural Computation, 9:1735-1780.
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LSTM v2

Forget

FA Gers et al (2000). “Learning to Forget: Continual Prediction
with LSTM", Neural Computation, 12:2451-2471.
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LSTM v3
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LSTM equations
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Example 1: speech recognition with recurrent networks
< Phoneme Probabilities

! Recurrent
Neural
Network

t

Speech
Acoustics

T Robinson et al (1996). “The use of recurrent networks in
continuous speech recognition”, in Automatic Speech and Speaker
Recognition Advanced Topics (Lee et al (eds)), Kluwer, 233-258.
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Example 2: speech recognition with stacked LSTMs
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H Sak et al (2014). “Long Short-Term Memory based Recurrent

Neural Network Architectures for Large Scale Acoustic Modelling”,

Interspeech.
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Example 3: recurrent network language models

s(t-1)

T Mikolov et al (2010). “Recurrent Neural Network Based
Language Model", Interspeech
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Example 4: recurrent encoder-decoder

Machine translation
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Decoder o | Sutskever et al (2014).
Yr “Sequence to Sequence

Learning with Neural
Networks", NIPS.

) e K Cho et al (2014). “Learning
Phrase Representations using
% T RNN Encoder-Decoder for
X X, Xr Statistical Machine
Encoder Translation”, EMNLP.

MLP Lecture 9 (extra) 18



RNNs can model sequences

Unfolding an RNN gives a deep feed-forward network
Back-propagation through time

LSTM

RNNs are useful for more than sequence learning! — see recent
Google DeepMind work on using RNNs to locate items of
interest in images

More on recurrent networks next semester in NLU (and 1-2
lectures in ASR and MT)

MLP Lecture 9 (extra) 19



