Recurrent Networks

Steve Renals

Machine Learning Practical — MLP Lecture 9 (extra)
4 December 2015

MLP Lecture 9 (extra) 1

Introduction

Modelling sequential data

Recurrent hidden unit connections

Training RNNs: Back-propagation through time
LSTMs

Examples (speech and language)

MLP Lecture 9 (extra) 2

Sequential Data

= 000
2 QOO » s s o

t=1 O O O between feature vectors
= 000

x1 x2 x3

Sequential Data

@ Modelling sequential data
ot OO O with time dependences
between feature vectors

iden O OO OO0 @ Can model fixed context

with a feed-forward

mt OO OOOO0OO0O0O0O network with previous time

X1 X2 x3 x1 x2 x3 x1 x2 x3 input vectors added to the
2 1 t network input (in signal
2 frames of context processing this is called FIR

— finite input response)

MLP Lecture 9 (extra) 4

Sequential Data

recurrent
hidden

oot O OO

input O O

x1

x2
t

OO0

x3

@ Modelling sequential data

with time dependences
between feature vectors

Can model fixed context
with a feed-forward
network with previous time
input vectors added to the
network input (in signal
processing this is called FIR
— finite impulse response)

Model sequential inputs
using recurrent connections
to learn a time-dependent
state (in signal processing
this is called IR — infinite
impulse response)

MLP Lecture 9 (extra) 5

Recurrent networks

Can think of recurrent networks in terms of the dynamics of the
recurrent hidden state

@ Settle to a fixed point — stable representation for a sequence
(e.g. machine translation)

@ Regular oscillation (“limit cycle”) — learn some kind of
repetition

e Chaotic dynamics (non-repetitive) — theoretically interesting
(“computation at the edge of chaos”)

Useful behaviours of recurrent networks:

@ Recurrent state as memory — remember things for
(potentially) an infinite time

@ Recurrent state as information compression — compress a
sequence into a state representation

MLP Lecture 9 (extra) 6

Simplest recurrent network

yk(t) = softmax <Z Wk2)h))

r=0

hj(t) = sigmoid ZW xst)—i—z (t—1)

-~

Recurrent part

Output (t)

w®

T

w®

‘ Input (t) ‘ ‘ Hidden (t-1) ‘

MLP Lecture 9 (extra) 7

Recurrent network unfolded in time

‘ Output (t-1) ‘ ‘ Output (t) ‘ Output (t+1)

2)

2) w®

w(w!

w) w® w® wR)
4.‘ Hidden (t-1) }——{ Hidden (t) }——{ Hidden (t+1) }—-

w®) w® w®
Input (t+1)

@ An RNN for a sequence of T inputs can be viewed as a deep
T-layer network with shared weights
@ We can train an RNN by doing backprop through this
unfolded network, making sure we share the weights
o Weight sharing
o if two weights are constrained to be equal (w; = w,) then they
will stay equal if the weight changes are equal
(OE/Owr = OE [Ows)
o achieve this by updating with (0E /0wy + OE /Ows) (cf Conv
Nets)

MLP Lecture 9 (extra) 8

‘ Input (t) ‘

Input (t-1)

Back-propagation through time (BPTT)

o We can train a network by unfolding and back-propagating
through time, summing the derivatives for each weight as we
go through the sequence

@ More efficiently, run as a recurrent network

e cache the unit outputs at each timestep

e cache the output errors at each timestep

e then backprop from the final timestep to zero, computing the
derivatives at each step

e compute the weight updates by summing the derivatives across
time

@ Expensive — backprop for a 1,000 item sequence equivalent to
a 1,000-layer feed-forward network

@ Truncated BPTT — backprop through just a few time steps
(e.g. 20)

MLP Lecture 9 (extra) 9

Vanishing and exploding gradients

@ BPTT involves taking the product of many gradients (as in a
very deep network) — this can lead to vanishing (component
gradients less than 1) or exploding (greater than 1) gradients

@ This can prevent effective training
@ Modified optimisation algorithms
o RMSProp (normalise the gradient for each weight by average
of it magnitude, learning rate for each weight)
o Hessian-free — an approximation to second-order approaches
which use curvature information
@ Modified hidden unit transfer functions
o Long short term memory (LSTM)
o Linear self-recurrence for each hidden unit (long-term memory)
o Gates - dynamic weights which are a function of the inputs

o RelUs

MLP Lecture 9 (extra) 10

LSTM vl

Basic

Sigmoid
Unit

MLP Lecture 9 (extra) 11

LSTM vl

Linear
Recurrence

MLP Lecture 9 (extra) 11

LSTM vl

Output

Gate
—

Input

Gate @

S Hochreiter and J Schmidhuber (1997). “Long Short-Term
Memory", Neural Computation, 9:1735-1780.

MLP Lecture 9 (extra) 11

LSTM v2

Forget

FA Gers et al (2000). “Learning to Forget: Continual Prediction
with LSTM", Neural Computation, 12:2451-2471.

MLP Lecture 9 (extra) 12

LSTM v3

Pe
Conne

B

ephole T
ctions P
10 | Ht-1) ==

MLP Lecture 9 (extra)

LSTM equations

it = 0(Wigxe + Wimme—1 + Wiccr—1 + b;) 1)

fe = o(Wiexe + Wi gme—1 + Wegper—1 + by) (2)

et = fi©ci—1+ 1t © gWegxe + Wemme—1 + be) 3)
ot = o(Wozxs + Wommi—1 + Woeer + bo) 4)

me = or © h(ct) (5)

Yyt = Wymme + by (6)

MLP Lecture 9 (extra) 14

Example 1: speech recognition with recurrent networks
< Phoneme Probabilities

! Recurrent
Neural
Network

t

Speech
Acoustics

T Robinson et al (1996). “The use of recurrent networks in
continuous speech recognition”, in Automatic Speech and Speaker
Recognition Advanced Topics (Lee et al (eds)), Kluwer, 233-258.

MLP Lecture 9 (extra) 15

Example 2: speech recognition with stacked LSTMs

’ input ‘ ’ mput ‘ ’ mput ‘ ’ mput ‘

l
| LsT™ ‘T] LSTM H] LSTM] LSTM -
J ’recurrent}*

’ output ‘ ’ LSTM ‘4—

output (c) LSTMP i

(d) DLSTMP

recurrent

| output | | LSTM
@ LSTM

H Sak et al (2014). “Long Short-Term Memory based Recurrent

Neural Network Architectures for Large Scale Acoustic Modelling”,

Interspeech.
MLP Lecture 9 (extra)

Example 3: recurrent network language models

s(t-1)

T Mikolov et al (2010). “Recurrent Neural Network Based
Language Model", Interspeech

MLP Lecture 9 (extra) 17

Example 4: recurrent encoder-decoder

Machine translation

? 1 1 1
lHHHHHTHTHl

T T

—> <

= —>

A B C <EOS> z
Decoder o | Sutskever et al (2014).
Yr “Sequence to Sequence

Learning with Neural
Networks", NIPS.

) e K Cho et al (2014). “Learning
Phrase Representations using
% T RNN Encoder-Decoder for
X X, Xr Statistical Machine
Encoder Translation”, EMNLP.

MLP Lecture 9 (extra) 18

RNNs can model sequences

Unfolding an RNN gives a deep feed-forward network
Back-propagation through time

LSTM

RNNs are useful for more than sequence learning! — see recent
Google DeepMind work on using RNNs to locate items of
interest in images

More on recurrent networks next semester in NLU (and 1-2
lectures in ASR and MT)

MLP Lecture 9 (extra) 19

