
Convolutional Networks (part 2)

Steve Renals

Machine Learning Practical — MLP Lecture 8
11 November 2015

MLP Lecture 8 Convolutional Networks (part 2) 1

Recap: Convolutional Network

Input 28x28 3x24x24 Feature Maps

 3x12x12 Pooling Layers
Hidden
Layer

Softmax
Output
Layer

Simple ConvNet:

One convolutional layer with max-pooling

Final fully connected hidden layer (no sharing weight)

Softmax output layer

MLP Lecture 8 Convolutional Networks (part 2) 2

Recap: Stacking convolutional layers

Input 28x28 3x24x24 Feature Maps

 3x12x12 Pooling Layers

 6x8x8Feature Maps

 6x4x4
Pooling Layers

Local receptive fields

Weight sharing

Pooling/subsampling

MLP Lecture 8 Convolutional Networks (part 2) 3

Training Convolutional Networks – Pooling Layer

Input 28x28 3x24x24 Feature Maps

 3x12x12 Pooling Layers

 6x8x8Feature Maps

 6x4x4
Pooling Layers fully connected

sigmoid hidden layer
 fully connected

softmax output layer

GRADIENTS

DELTAS

LAYER L
LAYER L-1

LAYER L-2

LAYER L-3LAYER L-4

LAYER L-5

�L = hL � tL

@E

@WL
= hL�1|�L

�L�1 = �LWL| � f 0(aL�1)

@E

@WL�1
= hL�2|�L�1

�L�2 = �L�1WL�1|�L�3 = �L�2GL�2| � f 0(aL�3)

Notes:

Matrix G is a “pseudo-weight matrix” for max-pooling which
is set during the forward propagation: element Gba = 1 if
feature map unit b is contained in max-pool a and is the
maximum value for the current input. Unlike the real weight
matrices, note that G is different for each item in the
minibatch

MLP Lecture 8 Convolutional Networks (part 2) 4

Training Convolutional Networks – Pooling Layer

 3x12x12 Pooling Layers

 6x8x8Feature Maps

 6x4x4
Pooling Layers fully connected

sigmoid hidden layer
 fully connected

softmax output layer

GRADIENTS

DELTAS

LAYER L
LAYER L-1

LAYER L-2

LAYER L-3LAYER L-4

�L = hL � tL

@E

@WL
= hL�1|�L

�L�1 = �LWL| � f 0(aL�1)

@E

@WL�1
= hL�2|�L�1

�L�2 = �L�1WL�1|�L�3 = �L�2GL�2| � f 0(aL�3)

MLP Lecture 8 Convolutional Networks (part 2) 5

Training Convolutional Networks – Convolutional Layer

 3x12x12 Pooling Layers

 6x8x8Feature Maps

GRADIENTS

DELTAS

LAYER L-3LAYER L-4

�L�3 = �L�2GL�2| � f 0(aL�3)

Training the convolutional layer is more complicated

MLP Lecture 8 Convolutional Networks (part 2) 6

Training Convolutional Networks – Convolutional Layer

 3x12x12 Pooling Layers

 1x8x8Feature Maps

GRADIENTS

DELTAS

LAYER L-3LAYER L-4

�L�3 = �L�2GL�2| � f 0(aL�3)

Only need to consider one pooling layer

MLP Lecture 8 Convolutional Networks (part 2) 6

Training Convolutional Networks – Convolutional Layer

 3x12x12 Pooling Layers

 1x8x8Feature Maps

GRADIENTS

DELTAS

LAYER L-3LAYER L-4

�L�3 = �L�2GL�2| � f 0(aL�3)

Simplify by only considering one feature map

MLP Lecture 8 Convolutional Networks (part 2) 6

Convolutional Layer – Forward Prop

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

hi,j = sigmoid(
m�1X

k=0

m�1X

`=0

wk,`xi+k,j+` + b)

In the forward propagation, each hidden unit is connected to a
region of input units (the receptive field)

MLP Lecture 8 Convolutional Networks (part 2) 7

Convolutional Layer – Forward Prop

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

hi,j = sigmoid(
m�1X

k=0

m�1X

`=0

wk,`xi+k,j+` + b)

In the forward propagation, each hidden unit is connected to a
region of input units (the receptive field)

MLP Lecture 8 Convolutional Networks (part 2) 7

Convolutional Layer – Forward Prop

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

hi,j = sigmoid(
m�1X

k=0

m�1X

`=0

wk,`xi+k,j+` + b)

In the forward propagation, each hidden unit is connected to a
region of input units (the receptive field)

MLP Lecture 8 Convolutional Networks (part 2) 7

Convolutional Layer – Forward Prop

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

hi,j = sigmoid(
m�1X

k=0

m�1X

`=0

wk,`xi+k,j+` + b)

In the forward propagation, each hidden unit is connected to a
region of input units (the receptive field)

MLP Lecture 8 Convolutional Networks (part 2) 7

Convolutional Layer – Back Prop

For backprop we need to consider the region of hidden units
connected to each input unit.

MLP Lecture 8 Convolutional Networks (part 2) 8

Convolutional Layer – Back Prop

For backprop we need to consider the region of hidden units
connected to each input unit.

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

The top-left input unit (1,1) is connected to just one hidden unit

MLP Lecture 8 Convolutional Networks (part 2) 8

Convolutional Layer – Back Prop

For backprop we need to consider the region of hidden units
connected to each input unit.

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

Input unit (2,2) is in the receptive fields of 2× 2 = 4 hidden units

MLP Lecture 8 Convolutional Networks (part 2) 8

Convolutional Layer – Back Prop

For backprop we need to consider the region of hidden units
connected to each input unit.

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

(3,3) is in the receptive fields of 3 × 3 = 9 hidden units

MLP Lecture 8 Convolutional Networks (part 2) 8

Convolutional Layer – Back Prop

For backprop we need to consider the region of hidden units
connected to each input unit.

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

(4,4) is in the receptive fields of 4 × 4 = 16 hidden units

MLP Lecture 8 Convolutional Networks (part 2) 8

Convolutional Layer – Back Prop

For backprop we need to consider the region of hidden units
connected to each input unit.

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

(5,5) and all units away from the edge are in the receptive fields of
5 × 5 = 25 hidden units

MLP Lecture 8 Convolutional Networks (part 2) 8

Convolutional Layer – Back Prop

For backprop we need to consider the region of hidden units
connected to each input unit.

 12x12 Pooling (or Input) Layer 8x8Feature Map

LAYER L-3LAYER L-4

(5,5) and all units away from the edge are in the receptive fields of
5 × 5 = 25 hidden units

MLP Lecture 8 Convolutional Networks (part 2) 8

Convolutional Layer – Back Prop

As usual we want to back-propagate the δ values:

δL−4s =
∑

j∈connected to s

wjsδ
L−3
j f ′(as)

Look at the shared weights used for back prop:

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

w(1,1)

MLP Lecture 8 Convolutional Networks (part 2) 9

Convolutional Layer – Back Prop

As usual we want to back-propagate the δ values:

δL−4s =
∑

j∈connected to s

wjsδ
L−3
j f ′(as)

Look at the shared weights used for back prop:

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

w(2,1)

MLP Lecture 8 Convolutional Networks (part 2) 9

Convolutional Layer – Back Prop

As usual we want to back-propagate the δ values:

δL−4s =
∑

j∈connected to s

wjsδ
L−3
j f ′(as)

Look at the shared weights used for back prop:

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

w(3,1)

MLP Lecture 8 Convolutional Networks (part 2) 9

Convolutional Layer – Back Prop

As usual we want to back-propagate the δ values:

δL−4s =
∑

j∈connected to s

wjsδ
L−3
j f ′(as)

Look at the shared weights used for back prop:

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

w(3,2)

MLP Lecture 8 Convolutional Networks (part 2) 9

Convolutional Layer – Back Prop

As usual we want to back-propagate the δ values:

δL−4s =
∑

j∈connected to s

wjsδ
L−3
j f ′(as)

Look at the shared weights used for back prop:

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

w(3,4)

MLP Lecture 8 Convolutional Networks (part 2) 9

Convolutional Layer – Back Prop

As usual we want to back-propagate the δ values:

δL−4s =
∑

j∈connected to s

wjsδ
L−3
j f ′(as)

Look at the shared weights used for back prop:

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

w(5,5)

MLP Lecture 8 Convolutional Networks (part 2) 9

Backprop as convolution

If we have an m ×m kernel size, we can pad the feature map with
(m − 1) rows and columns of 0s top and bottom, left and right.

Back prop can then be carried out as a convolution using the
weight matrix to scan the padded feature map... BUT the weight
matrix is rotated by 180 ◦ as shown before

MLP Lecture 8 Convolutional Networks (part 2) 10

Backprop as convolution

If we have an m ×m kernel size, we can pad the feature map with
(m − 1) rows and columns of 0s top and bottom, left and right.

Back prop can then be carried out as a convolution using the
weight matrix to scan the padded feature map... BUT the weight
matrix is rotated by 180 ◦ as shown before

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

MLP Lecture 8 Convolutional Networks (part 2) 10

Backprop as convolution

If we have an m ×m kernel size, we can pad the feature map with
(m − 1) rows and columns of 0s top and bottom, left and right.

Back prop can then be carried out as a convolution using the
weight matrix to scan the padded feature map... BUT the weight
matrix is rotated by 180 ◦ as shown before

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

MLP Lecture 8 Convolutional Networks (part 2) 10

Backprop as convolution

If we have an m ×m kernel size, we can pad the feature map with
(m − 1) rows and columns of 0s top and bottom, left and right.

Back prop can then be carried out as a convolution using the
weight matrix to scan the padded feature map... BUT the weight
matrix is rotated by 180 ◦ as shown before

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

MLP Lecture 8 Convolutional Networks (part 2) 10

Backprop as convolution

If we have an m ×m kernel size, we can pad the feature map with
(m − 1) rows and columns of 0s top and bottom, left and right.

Back prop can then be carried out as a convolution using the
weight matrix to scan the padded feature map... BUT the weight
matrix is rotated by 180 ◦ as shown before

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

MLP Lecture 8 Convolutional Networks (part 2) 10

Backprop as convolution

If we have an m ×m kernel size, we can pad the feature map with
(m − 1) rows and columns of 0s top and bottom, left and right.

Back prop can then be carried out as a convolution using the
weight matrix to scan the padded feature map... BUT the weight
matrix is rotated by 180 ◦ as shown before

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

MLP Lecture 8 Convolutional Networks (part 2) 10

Backprop as convolution

If we have an m ×m kernel size, we can pad the feature map with
(m − 1) rows and columns of 0s top and bottom, left and right.

Back prop can then be carried out as a convolution using the
weight matrix to scan the padded feature map... BUT the weight
matrix is rotated by 180 ◦ as shown before

 12x12 Pooling (or Input) Layer

 8x8Feature Map

LAYER L-3LAYER L-4

MLP Lecture 8 Convolutional Networks (part 2) 10

Convolutional Layer – Back Prop

Back-propagation in the convolution layer, is also a convolution!
But we have to rotate the weight matrix W by 180◦, WR

Using the convolution operator we saw we can write the forward
prop as:

hL−3 = sigmoid(WL−3 ∗ hL−4 + bL−3)

And we can write the back-prop as:

δL−4 = WL−3R ∗ δL−3 ◦ f ′(aL−4)

MLP Lecture 8 Convolutional Networks (part 2) 11

Implementing multilayer networks

Example at a time:

input vector

weight matrix

output vector

d k k

d

MLP Lecture 8 Convolutional Networks (part 2) 12

Implementing multilayer networks

Minibatch:

input vector
(minibatch) weight matrix

output vector
(minibatch)

d k k

dn n

MLP Lecture 8 Convolutional Networks (part 2) 12

Implementing multilayer networks

Minibatch:

input vector
(minibatch) weight matrix

output vector
(minibatch)

d k k

dn n

input dimension x minibatch: Represent each layer as a
2-dimension matrix, where each row corresponds to a training
example, and the number of minibatch examples is the number of
rows

MLP Lecture 8 Convolutional Networks (part 2) 12

Implementing Convolutional Networks

Example at a time, single input image, single feature map:

input image weight matrix
(kernel)

feature map

x m

l

y

MLP Lecture 8 Convolutional Networks (part 2) 13

Implementing Convolutional Networks

Example at a time, single input image, multiple feature map:

input image weight matrices
(kernels)

feature maps

x m

l

y

MLP Lecture 8 Convolutional Networks (part 2) 13

Implementing Convolutional Networks

Example at a time, multiple input images, multiple feature map:

multiple
input images

weight matrices
(kernels)

feature maps

x

l

y

m

MLP Lecture 8 Convolutional Networks (part 2) 13

Implementing Convolutional Networks

Minibatch, multiple input images, multiple feature map:

minibatch of
multiple

input images

weight matrices
(kernels)

minibatch of
feature maps

x

l

y

m

.
nn

MLP Lecture 8 Convolutional Networks (part 2) 13

Implementing Convolutional Networks

Inputs / layer values:

Each input image (and convlutional and pooling layer) is
2-dimensions (x,y)
If we have multiple feature maps, then that is a third dimension
And the minibatch adds a fourth dimension
Thus we represent each input (layer values) using a
4-dimension tensor (array): (minibatch-size, num-fmaps, x, y)

Weight matrices (kernels)

Each weight matrix used to scan across an image has 2 spatial
dimensions (x,y)
If there are multiple feature maps to be computed, then that is
a third dimension
Multiple input feature maps adds a fourth dimension
Thus the weight matrices are also represented using a
4-dimension tensor: (num-fmaps-in, num-fmaps-out, x, y)

MLP Lecture 8 Convolutional Networks (part 2) 14

4D tensors in numpy

Both forward and back prop thus involves multiplying 4D tensors.
There are various ways to do this:

Explicitly loop over the dimensions: this results in simpler
code, but can be inefficient. Although using cython to
compile the loops as C can speed things up

Serialisation: By replicating input patches and weight
matrices, it is possible to convert the required 4D tensor
multiplications into a large dot product. Requires careful
manipulation of indices!

Convolutions: use explicit convolution functions for forward
and back prop, rotating for the backprop

MLP Lecture 8 Convolutional Networks (part 2) 15

Recent advances using

convolutional networks

MLP Lecture 8 Convolutional Networks (part 2) 16

ImageNet Classification

Krizhevsky, Sutskever and Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks”, NIPS-2012. http:

//papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

MLP Lecture 8 Convolutional Networks (part 2) 17

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Face recognition

Taigman et al, “DeepFace: Closing the Gap to Human-Level
Performance in Face Verification”, CVPR-2014. http:

//www.mihantarjomeh.com/wp-content/uploads/2015/01/DeepFace-Closing-the-Gap-to-Human-Level.pdf

MLP Lecture 8 Convolutional Networks (part 2) 18

http://www.mihantarjomeh.com/wp-content/uploads/2015/01/DeepFace-Closing-the-Gap-to-Human-Level.pdf
http://www.mihantarjomeh.com/wp-content/uploads/2015/01/DeepFace-Closing-the-Gap-to-Human-Level.pdf

Action recognition in video

Simonyan and Zisserman, “Two-Stream Convolutional Networks
for Action Recognition in Videos”, NIPS-2014.
http://papers.nips.cc/paper/

5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf

MLP Lecture 8 Convolutional Networks (part 2) 19

http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf

Summary

Convolutional networks include local receptive fields, weight
sharing, and pooling leading

Backprop training can also be implemented as a
“reverse”convolutional layer (with the weight matrix rotated)

Implement using 4D tensors:

Inputs / Layer values: minibatch-size, number-fmaps, x, y
Weights: number-fmaps-in, number-fmaps-out, x, y

Reading:
Yoshua Bengio et al, Deep Learning (ch 9)
http://goodfeli.github.io/dlbook/contents/convnets.html

MLP Lecture 8 Convolutional Networks (part 2) 20

http://goodfeli.github.io/dlbook/contents/convnets.html

