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How can we make this better?

Recap: Multi-layer network for MNIST

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

(image from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chap6.html)
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Convolutional networks

On MNIST, we can get 2% or error (or even better) using these
kind of networks, but
@ They ignore the spatial (2-D) structure of the input images —
unroll each 28x28 image into a 784-D vector
@ Each hidden unit looks at the units in the layer below, so
pixels that are spatially separate are treated the same way as
pixels that are adjacent
@ There is no obvious way for networks to learn the same
features (e.g. edges) at different places in the input image

Fully connected hidden layer — 576 hidden units
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Convolutional networks address these issues through
o Local receptive fields in which hidden units are connected to
local patches of the layer below,
@ Weight sharing which enables the construction of feature
maps,
@ Pooling which condenses information from the previous layer.
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receptive fields — 24x24 hidden units
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Local receptive fields Shared weights

o Each hidden unit is connected to a small (m x m) region of
the input space — the local receptive field

o If we have a d x d input space, then we have
(d = m+1) x (d — m+ 1) hidden unit space

@ Each hidden unit extracts a feature from “its” region of input
space
@ Here the receptive field “stride length” is 1, it could be larger

o Constrain each hidden unit h;; to extract the same feature by
sharing weights across the receptive fields

o For hidden unit h(i, f)

m—1m-1

hij = sigmoid(z Z Wk ¢ Xitk j+e + b)
k=0 (=0

where wy ; are elements of the shared m x m weight matrix
w, b is the shared bias, and xj4x j4¢ is the input at i + k, j + £

@ We use k and / to index into the receptive field, whose top
left corner is at x;;
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@ We scan the m x m feature detector across the image, so we
obtain a map of where the feature corresponding to the shared
weight matrix (kernel) occurs in the image - Feature map

@ The feature map encodes translation invariance — it doesn't
matter where an digit image is in the input we can extract the
same features

@ Multiple feature maps — a hidden layer can consist of F
different feature maps — in this case F x 24 % 24 units in total

Weights and Connections

Consider an MNIST hidden layer with a single feature maps, using
a 5x5 kernels (so a 24x24 feature map):

@ Number of connections per feature map:
24 x 24 x 5 x 5 = 14,400 connections
24 x 24 = 576 biases

@ But since weights are shared, we have
5 x 5 =25 weights
1 bias

Now consider the case where we have 40 feature maps. We will
have 1,000 weights (and 40 biases), but 576,000 (+ 23,040)
connections!

In comparison the 800 hidden unit MLP from the coursework 1 has
784 x 800 + 800 = 628,000 input-hidden weights

MLP Lecture 7 12



000 3
Identity 010 3

000

10 -1

00 o0

-10 1

0 10
Edge detection 1 41

0 10

—1 -1 -1

-1 8 -1

1 -1 -1

0 -1 0 4
Sharpen -1 5 -1

0 -1 0

https://en.wikipedia.org/wiki/

Kernel_(image_processing)

MLP Lecture 7

 MPlecure? | ConvoltimalNewaiNewoks 13 |

24x24 Feature Map

MLP Lecture 7

Putting it together — convolutional layer ConvNet — Convolutional Network
g

Input 28x28
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o Image kernels have
been designed and
used for feature
extraction in image
processing (e.g. edge
detection)

@ However, we can
learn multiple kernel
functions (feature
maps) by optimising
the network cost
function

o Automating feature
engineering

12x12
Pooling Layer

3x12x12 Pooling Layers

3x24x24 Feature Maps
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@ This type of feature map is often called a Convolutional layer

@ We can write the feature map hidden unit equation:

m m
h,‘J = sigmoid(z Z Wi (Xi+k j+¢ + b)
k=1/¢=1
as
h = sigmoid(w * x + b)

x is called a convolution in signal processing

(Note for signal processing experts: The way a 2D convolution is defined
in signal and image processing, we would need “flip” the m x m weight
matrix (reflect horizontally and vertically). We have been using a
cross-correlation (i.e. “unflipped”). In common with most of the Conv
Nets literature we shall use convolution to describe both cases. As long as

you are consistent it is not important which you apply, for our purposes.)
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@ Pooling or subsampling takes a feature map and reduces it in
size — e.g. by transforming a set of 2x2 regions to a single unit
@ Pooling functions
o Max — takes the maximum value of the units in the region (c.f.

maxout)
o L, pooling — take the L, norm of the units in the region:

1/p
W=|{ > n
ieregion
o Average / Sum - takes the average / sum value of the pool

@ Information reduction removes precise location information for
a feature

@ Apply pooling to each feature map separately
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Simple ConvNet:
o Convolutional layer with max-pooling
o Fully connected hidden layer (no sharing weight)
@ Softmax output layer

o With 20 feature maps and a final hidden layer of 100 hidden
unit:
20x (5x5+1)420x 12 x 12 x 100+ 100+ 100 x 10+ 10 =
289, 630 weights
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Learning image kernels Convolutional Layer
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Multiple input images Stacking convolutional layers

o If we have a colour image, each pixel is defined by 3 RGB
values — so our input is in fact 3 images (one R, one G, and
one B)

o If we want stack convolutional layers, then the second layer
needs to take input from all the feature maps in the first layer

o Local receptive fields across multiple input images

@ In a second convolutional layer (C2) on top of 20 12 x 12
feature maps, each unit will look at 20 x 5 x 5 input
units(combining 20 receptive fields each in the same spatial
location)

o Typically do not tie weights across feature maps, so each unit
in C2 has 20 x 5 x 5 = 500 weights, plus a bias. (Assuming a
5 x 5 kernel size)
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Example: LeNet5 (LeCun et al, 1997)
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@ Train convolutional networks with a straightforward but
careful application of backprop / SGD

o Exercise: prior to the next lecture, write down the gradients
for the weights and biases of the feature maps in a
convolutional network. Remember to take account of weight
sharing.

@ Next lecture: implementing convolutional networks: how to
deal with local receptive fields and tied weights, computing
the required gradients...

@ Coursework 2 will involve implementing and testing
convolutional networks
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o Convolutional networks include local receptive fields, weight
sharing, and pooling leading to:
o Modelling the spatial structure
e Translation invariance
o Local feature detection
o Reading:
Michael Nielsen, Neural Networks and Deep Learning (ch 6)
http://neuralnetworksanddeeplearning.com/chap6.html
Yann LeCun et al, “Gradient-Based Learning Applied to
Document Recognition”, Proc IEEE, 1998.
http://dx.doi.org/10.1109/5.726791
Yoshua Bengio et al, Deep Learning (ch 9)
http://goodfeli.github.io/dlbook/contents/convnets.html

MLP Lecture 7

20

MNIST Results (1997)
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