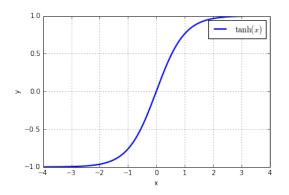
Are there alternatives to Sigmoid Hidden Units?

Hidden Unit Transfer Functions Initialising Deep Networks

Steve Renals

Machine Learning Practical — MLP Lecture 6 28 October 2015

tanh

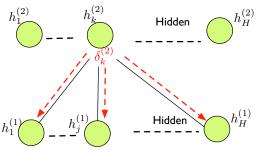


$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \quad ; \quad \text{sigmoid}(x) = \frac{1 + \tanh(x/2)}{2}$$

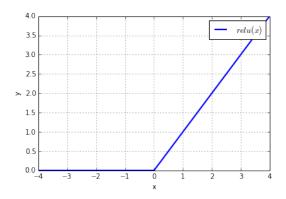
Derivative: $\frac{d}{dx} \tanh(x) = 1 - \tanh^2(x)$

tanh hidden units

- ullet tanh has same shape as sigmoid but has output range ± 1
- Results about approximation capability of sigmoid networks also apply to tanh networks
- Possible reason to prefer tanh over sigmoid: allowing units to be positive or negative allows gradient for weights into a hidden unit to have a different sign



Rectified Linear Unit – ReLU



$$\mathsf{relu}(x) = \mathsf{max}(0, x)$$

Derivative:
$$\frac{d}{dx} \operatorname{relu}(x) = \begin{cases} 0 & \text{if } x \le 0 \\ 1 & \text{if } x > 0 \end{cases}$$

ReLU hidden units

- Similar approximation results to tanh and sigmoid hidden units
- Empirical results for speech and vision show consistent improvements using relu over sigmoid or tanh
- Unlike tanh or sigmoid there is no positive saturation saturation results in very small derivatives (and hence slower learning)
- Negative input to relu results in zero gradient (and hence no learning)
- Relu is computationally efficient: max(0,x)
- Relu units can "die" (i.e. respond with 0 to everything)
- Relu units can be very sensitive to the learning rate

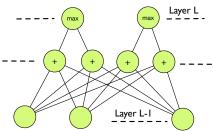
Maxout units

• Unit that takes the max of two linear functions $z_i = \mathbf{w}^i \mathbf{h}^{\mathbf{L}-1}$:

$$h = \max(z_1, z_2)$$

(if $\mathbf{w}^2 = 0$ then we have Relu)

- Has the benefits of Relu (piecewise linear, no saturation), without the drawback of dying units
- Twice the number of parameters



Generalising maxout

• Units can take the max over G linear functions z_i :

$$h = \max_{i=0}^{G} (z_i)$$

Maxout can be generalised to other functions, e.g. p-norm

$$h = ||\mathbf{z}||_p = \left(\sum_{i=0}^G |z_i|^p\right)^{1/p}$$

Typically p = 2

• p can be learned by gradient descent. (Exercise: What is the gradient $\partial E/\partial p$ for a p-norm unit?)

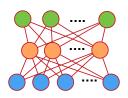
How should we initialise deep networks?

Initialising deep networks (Pretraining)

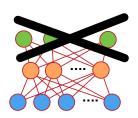
- Why is training deep networks hard?
 - Vanishing (or exploding) gradients gradients for layers closer to the input layer are computed multiplicatively using backprop
 - If sigmoid/tanh hidden units near the output saturate then back-propagated gradients will be very small
 - Good discussion in chapter 5 of Neural Networks and Deep Learning
- Solve by stacked pretraining
 - Train the first hidden layer
 - Add a new hidden layer, and train only the parameters relating to the new hidden layer. Repeat.
 - The use the pretrained weights to initialise the network emphfine-tune the complete network using gradient descent
- Approaches to pre-training
 - Supervised: Layer-by-layer cross-entropy training
 - Unsupervised: Autoencoders
 - Unsupervised: Restricted Boltzmann machines (not covered in this course)

- Train a network with one hidden layer
- Remove the output layer and weights leading to the output layer
- Add an additional hidden layer and train only the newly added weights
- Goto 2 or finetune & stop if deep enough

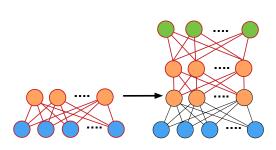
- Train a network with one hidden layer
- Remove the output layer and weights leading to the output layer
- Add an additional hidden layer and train only the newly added weights
- Goto 2 or finetune & stop if deep enough



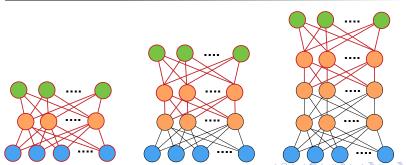
- Train a network with one hidden layer
- Remove the output layer and weights leading to the output layer
- Add an additional hidden layer and train only the newly added weights
- Goto 2 or finetune & stop if deep enough



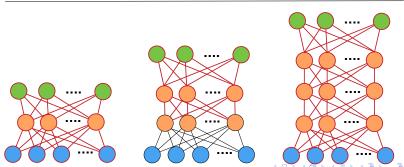
- Train a network with one hidden layer
- Remove the output layer and weights leading to the output layer
- 4 Add an additional hidden layer and train only the newly added weights
- Goto 2 or finetune & stop if deep enough



- Train a network with one hidden layer
- Remove the output layer and weights leading to the output layer
- Add an additional hidden layer and train only the newly added weights
- Goto 2 or finetune & stop if deep enough

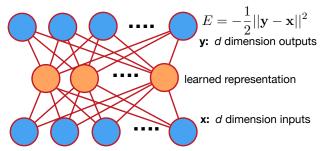


- Train a network with one hidden layer
- Remove the output layer and weights leading to the output layer
- Add an additional hidden layer and train only the newly added weights
- Goto 2 or finetune & stop if deep enough



Autoencoders

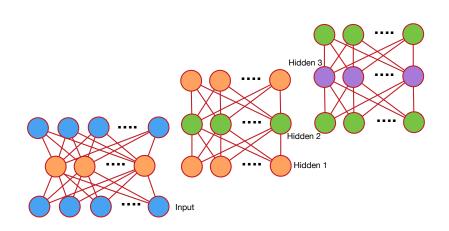
- An autoencoder is a neural network trained to map its input into a distributed representation from which the input can be reconstructed
- Example: single hidden layer network, with an output the same dimension as the input, trained to reproduce the input using squared error cost function



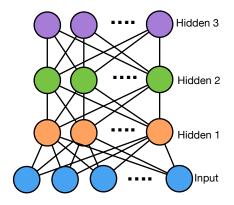
Stacked autoencoders

- Can the hidden layer just copy the input (if it has an equal or higher dimension)?
 - In practice experiments show that nonlinear autoencoders trained with stochastic gradient descent result in useful hidden representations
 - Early stopping acts as a regulariser
- Stacked autoencoders train a sequence of autoencoders, layer-by-layer
 - First train a single hidden layer autoencoder
 - Then use the learned hidden layer as the input to a new autoencoder

Stacked Autoencoders

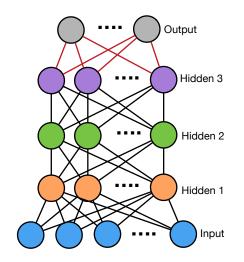


Pretraining using Stacked autoencoder



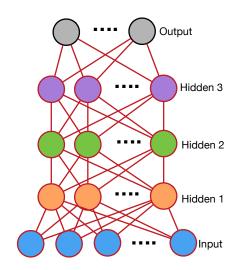
Initialise hidden layers

Pretraining using Stacked autoencoder



Train output layer

Pretraining using Stacked autoencoder

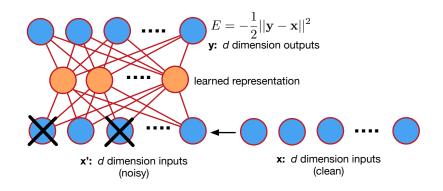


Fine tune whole network

Denoising Autoencoders

- Basic idea: Map from a corrupted version of the input to a clean version (at the output)
- Forces the learned representation to be stable and robust to noise and variations in the input
- To perform the denoising task well requires a representation which models the important structure in the input
- The aim is to learn a representation that is robust to noise, not to perform the denoising mapping as well as possible
- Noise in the input:
 - Random Gaussian noise added to each input vector
 - Masking randomly setting some components of the input vector to 0
 - Salt & Pepper randomly setting some components of the input vector to 0 and others to 1
- Stacked denoising autoencoders noise is only applied to the input vectors, not to the learned representations

Denoising Autoencoder



Summary

- Hidden unit transfer functions: tanh, ReLU, Maxout
- Layer-by-layer Pretraining and Autoencoders
 - For many tasks (e.g. MNIST) pre-training seems to be necessary / useful for training deep networks
 - For some tasks with very large sets of training data (e.g. speech recognition) pre-training may not be necessary
 - (Can also pre-train using stacked restricted Boltzmann machines)
- Reading: Michael Nielsen, chapter 5 of Neural Networks and Deep Learning

```
http://neuralnetworksanddeeplearning.com/chap5.html Pascal Vincent et al, "Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion", JMLR, 11:3371–3408, 2010.
```

http://www.jmlr.org/papers/volume11/vincent10a/
vincent10a.pdf