
Hidden Unit Transfer Functions
Initialising Deep Networks

Steve Renals

Machine Learning Practical — MLP Lecture 6
28 October 2015

MLP Lecture 6 Hidden Units / Initialisation 2

tanh

tanh(x) =
ex � e�x

ex + e�x
; sigmoid(x) =

1 + tanh(x/2)

2

Derivative:
d

dx
tanh(x) = 1 � tanh2(x)

MLP Lecture 6 Hidden Units / Initialisation 3

tanh hidden units

tanh has same shape as sigmoid but has output range ±1

Results about approximation capability of sigmoid networks
also apply to tanh networks

Possible reason to prefer tanh over sigmoid: allowing units to
be positive or negative allows gradient for weights into a
hidden unit to have a di↵erent sign

Hidden

Hidden

h
(2)
H

h
(2)
kh

(2)
1

�
(2)
k

h
(1)
jh

(1)
1

h
(1)
H

MLP Lecture 6 Hidden Units / Initialisation 4

Rectified Linear Unit – ReLU

relu(x) = max(0, x)

Derivative:
d

dx
relu(x) =

(
0 if x 0

1 if x > 0

MLP Lecture 6 Hidden Units / Initialisation 5

ReLU hidden units

Similar approximation results to tanh and sigmoid hidden units

Empirical results for speech and vision show consistent
improvements using relu over sigmoid or tanh

Unlike tanh or sigmoid there is no positive saturation –
saturation results in very small derivatives (and hence slower
learning)

Negative input to relu results in zero gradient (and hence no
learning)

Relu is computationally e�cient: max(0, x)

Relu units can “die” (i.e. respond with 0 to everything)

Relu units can be very sensitive to the learning rate

MLP Lecture 6 Hidden Units / Initialisation 6

Maxout units

Unit that takes the max of two linear functions zi = wihL�1:

h = max(z1, z2)

(if w2 = 0 then we have Relu)

Has the benefits of Relu (piecewise linear, no saturation),
without the drawback of dying units

Twice the number of parameters

maxmax
Layer L

+ ++

Layer L-1

+

MLP Lecture 6 Hidden Units / Initialisation 7

Generalising maxout

Units can take the max over G linear functions zi :

h =
G

max
i=0

(zi)

Maxout can be generalised to other functions, e.g. p-norm

h = ||z||p =

GX

i=0

|zi |p
!1/p

Typically p = 2

p can be learned by gradient descent.
(Exercise: What is the gradient @E/@p for a p-norm unit?)

MLP Lecture 6 Hidden Units / Initialisation 8

Initialising deep networks (Pretraining)

Why is training deep networks hard?
Vanishing (or exploding) gradients – gradients for layers closer
to the input layer are computed multiplicatively using backprop
If sigmoid/tanh hidden units near the output saturate then
back-propagated gradients will be very small
Good discussion in chapter 5 of Neural Networks and Deep
Learning

Solve by stacked pretraining
Train the first hidden layer
Add a new hidden layer, and train only the parameters relating
to the new hidden layer. Repeat.
The use the pretrained weights to initialise the network –
emphfine-tune the complete network using gradient descent

Approaches to pre-training
Supervised: Layer-by-layer cross-entropy training
Unsupervised: Autoencoders
Unsupervised: Restricted Boltzmann machines (not covered in
this course)

MLP Lecture 6 Hidden Units / Initialisation 10

Greedy Layer-by-layer cross-entropy training

1 Train a network with one hidden layer
2 Remove the output layer and weights leading to the output

layer
3 Add an additional hidden layer and train only the newly added

weights
4 Goto 2 or finetune & stop if deep enough

….

….

….

….

….

….

….

….

….

…. ….

….

MLP Lecture 6 Hidden Units / Initialisation 11

Autoencoders

An autoencoder is a neural network trained to map its input
into a distributed representation from which the input can be
reconstructed

Example: single hidden layer network, with an output the
same dimension as the input, trained to reproduce the input
using squared error cost function

….

….

….
y: d dimension outputs

x: d dimension inputs

learned representation

E = �1

2
||y � x||2

MLP Lecture 6 Hidden Units / Initialisation 12

Stacked autoencoders

Can the hidden layer just copy the input (if it has an equal or
higher dimension)?

In practice experiments show that nonlinear autoencoders
trained with stochastic gradient descent result in useful hidden
representations
Early stopping acts as a regulariser

Stacked autoencoders – train a sequence of autoencoders,
layer-by-layer

First train a single hidden layer autoencoder
Then use the learned hidden layer as the input to a new
autoencoder

MLP Lecture 6 Hidden Units / Initialisation 13

Stacked Autoencoders

….

….

….

….

….

…. ….

….

….

Input

Hidden 1

Hidden 2

Hidden 3

MLP Lecture 6 Hidden Units / Initialisation 14

Pretraining using Stacked autoencoder

….

….

….

….

Input

Hidden 1

Hidden 2

Hidden 3

Initialise hidden layers

MLP Lecture 6 Hidden Units / Initialisation 15

Pretraining using Stacked autoencoder

….

….

….

….

Input

Hidden 1

Hidden 2

Hidden 3

…. Output

Train output layer

MLP Lecture 6 Hidden Units / Initialisation 15

Pretraining using Stacked autoencoder

….

….

….

….

Input

Hidden 1

Hidden 2

Hidden 3

…. Output

Fine tune whole network

MLP Lecture 6 Hidden Units / Initialisation 15

Denoising Autoencoders

Basic idea: Map from a corrupted version of the input to a
clean version (at the output)

Forces the learned representation to be stable and robust to
noise and variations in the input

To perform the denoising task well requires a representation
which models the important structure in the input

The aim is to learn a representation that is robust to noise,
not to perform the denoising mapping as well as possible
Noise in the input:

Random Gaussian noise added to each input vector
Masking – randomly setting some components of the input
vector to 0
Salt & Pepper – randomly setting some components of the
input vector to 0 and others to 1

Stacked denoising autoencoders – noise is only applied to the
input vectors, not to the learned representations

MLP Lecture 6 Hidden Units / Initialisation 16

Denoising Autoencoder

….

….

….
y: d dimension outputs

x: d dimension inputs
(clean)

learned representation

E = �1

2
||y � x||2

x’: d dimension inputs
(noisy)

….

MLP Lecture 6 Hidden Units / Initialisation 17

Summary

Hidden unit transfer functions: tanh, ReLU, Maxout

Layer-by-layer Pretraining and Autoencoders
For many tasks (e.g. MNIST) pre-training seems to be
necessary / useful for training deep networks
For some tasks with very large sets of training data (e.g.
speech recognition) pre-training may not be necessary
(Can also pre-train using stacked restricted Boltzmann
machines)

Reading: Michael Nielsen, chapter 5 of Neural Networks and
Deep Learning
http://neuralnetworksanddeeplearning.com/chap5.html

Pascal Vincent et al, “Stacked Denoising Autoencoders:
Learning Useful Representations in a Deep Network with a
Local Denoising Criterion”, JMLR, 11:3371–3408, 2010.
http://www.jmlr.org/papers/volume11/vincent10a/

vincent10a.pdf

MLP Lecture 6 Hidden Units / Initialisation 18

