Hidden Unit Transfer Functions

Initialising Deep Networks

Steve Renals

Machine Learning Practical — MLP Lecture 6
28 October 2015

tanh(x)

05

= 00
EY
cLeg 3 2 -1 0 1 2 3 1
X —e X 1+ tanh(x/2
tanh(x) = :‘X-i-% i sigmoid(x) = %(X/)

Derivative: ditanh(x) =1 — tanh?(x)
X

MLP Lecture 6 2 MLP Lecture 6 3

tanh hidden units Rectified Linear Unit — ReLU

@ tanh has same shape as sigmoid but has output range +1

@ Results about approximation capability of sigmoid networks
also apply to tanh networks

@ Possible reason to prefer tanh over sigmoid: allowing units to

be positive or negative allows gradient for weights into a
hidden unit to have a different sign

1 12 Jxe)

0.6 = O

MLP Lecture 6 4

40
— relul(z)

30+

25

= 20F

05

0.0 | I I

relu(x) = max(0, x)

0 if x<0

d
Derivative: — rel =
rivativ " u(x) {1 x>0

MLP Lecture 6

5!

@ Similar approximation results to tanh and sigmoid hidden units

@ Empirical results for speech and vision show consistent
improvements using relu over sigmoid or tanh

@ Unlike tanh or sigmoid there is no positive saturation —
saturation results in very small derivatives (and hence slower
learning)

o Negative input to relu results in zero gradient (and hence no
learning)

@ Relu is computationally efficient: max(0, x)
@ Relu units can “die” (i.e. respond with 0 to everything)

@ Relu units can be very sensitive to the learning rate

MLP Lecture 6 6

@ Unit that takes the max of two linear functions z; = w'ht—1:
h = max(z1, z)

(if w? = 0 then we have Relu)

@ Has the benefits of Relu (piecewise linear, no saturation),
without the drawback of dying units

o Twice the number of parameters

MLP Lecture 6

Generalising maxout Initialising deep networks (Pretraining)

@ Units can take the max over G linear functions z;:
G
h = max(z)
i=0

@ Maxout can be generalised to other functions, e.g. p-norm
G 1/p
b=l = (Yler)
i=0

@ p can be learned by gradient descent.
(Exercise: What is the gradient OE /Jp for a p-norm unit?)

Typically p =2

MLP Lecture 6 8

Greedy Layer-by-layer cross-entropy training

@ Train a network with one hidden layer

@ Remove the output layer and weights leading to the output
layer

© Add an additional hidden layer and train only the newly added
weights

@ Goto 2 or finetune & stop if deep enough

MLP Lecture 6

@ Can the hidden layer just copy the input (if it has an equal or
higher dimension)?

o In practice experiments show that nonlinear autoencoders
trained with stochastic gradient descent result in useful hidden
representations

o Early stopping acts as a regulariser

@ Stacked autoencoders — train a sequence of autoencoders,
layer-by-layer

o First train a single hidden layer autoencoder

o Then use the learned hidden layer as the input to a new
autoencoder

MLP Lecture 6

11

@ Why is training deep networks hard?
o Vanishing (or exploding) gradients — gradients for layers closer
to the input layer are computed multiplicatively using backprop
o If sigmoid/tanh hidden units near the output saturate then
back-propagated gradients will be very small
e Good discussion in chapter 5 of Neural Networks and Deep
Learning
@ Solve by stacked pretraining
o Train the first hidden layer
e Add a new hidden layer, and train only the parameters relating
to the new hidden layer. Repeat.
o The use the pretrained weights to initialise the network —
emphfine-tune the complete network using gradient descent
@ Approaches to pre-training
o Supervised: Layer-by-layer cross-entropy training
o Unsupervised: Autoencoders
o Unsupervised: Restricted Boltzmann machines (not covered in
this course)

MLP Lecture 6

Autoencoders

@ An autoencoder is a neural network trained to map its input
into a distributed representation from which the input can be
reconstructed

o Example: single hidden layer network, with an output the
same dimension as the input, trained to reproduce the input
using squared error cost function

1
E=—glly x|

y: d dimension outputs

learned representation

x: d dimension inputs

MLP Lecture 6

Stacked autoencoders Stacked Autoencoders

MLP Lecture 6

10

12

Pretraining using Stacked autoencoder Pretraining using Stacked autoencoder

Output

Hidden 3 '(-
.& Hidden 2 .“‘

~
@

2
&)
)

O

@
=y
9

Y
0‘.

<2

N\
R
¢
N

<

Initialise hidden layers

Train output layer

MLP Lecture 6 15 MLP Lecture 6 15

@ Basic idea: Map from a corrupted version of the input to a

Output clean version (at the output)

@ Forces the learned representation to be stable and robust to
noise and variations in the input

Hidden 3 o To perform the denoising task well requires a representation
which models the important structure in the input

S
a\aa e
99,9

The aim is to learn a representation that is robust to noise,

not to perform the denoising mapping as well as possible

o Noise in the input:

o Random Gaussian noise added to each input vector

e Masking — randomly setting some components of the input
vector to 0

‘g o Salt & Pepper — randomly setting some components of the

input vector to 0 and others to 1

<7
vI
X/

NS
e
N

v

o Stacked denoising autoencoders — noise is only applied to the
Fine tune whole network input vectors, not to the learned representations

MLP Lecture 6 15 MLP Lecture 6 16

@ Hidden unit transfer functions: tanh, ReLU, Maxout
@ Layer-by-layer Pretraining and Autoencoders
o For many tasks (e.g. MNIST) pre-training seems to be
necessary / useful for training deep networks
o For some tasks with very large sets of training data (e.g.
speech recognition) pre-training may not be necessary
learned representation o (Can also pre-train using stacked restricted Boltzmann
machines)

o Reading: Michael Nielsen, chapter 5 of Neural Networks and
- ‘ ‘ ‘ e ‘ Deep Learning

http://neuralnetworksanddeeplearning.com/chap5.html

1 ,
E=—2|ly —x|?
5 lly = x|

y: d dimension outputs

x’: d dimension inputs x: d dimension inputs ' b n
(noisy) (clean) Pascal Vincent et al, “Stacked Denoising Autoencoders:

Learning Useful Representations in a Deep Network with a
Local Denoising Criterion”, JMLR, 11:3371-3408, 2010.
http://www.jmlr.org/papers/volumell/vincent10a/
vincent10Oa.pdf

MLP Lecture 6 17 MLP Lecture 6 18

