
Regularisation (cont.)
Hidden Unit Transfer Functions

Steve Renals

Machine Learning Practical — MLP Lecture 5
21 October 2015

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 1

Training with Momentum

∆w(t) = −(1− α)η
∂E

∂w
+ α∆w(t − 1)

α is the momentum

Weight changes start by following the gradient

After a few updates they start to have velocity – no longer
pure gradient descent

Momentum term encourages the weight change to go in the
previous direction

Damps the random directions of the gradients, to encourage
weight changes in a consistent direction

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 2

Learning Rate Schedules

Proofs of convergence for stochastic optimisation rely on a
learning rate that reduces through time (as 1/t) - Robbins
and Munro (1951)

Learning rate schedule – typically initial larger steps followed
by smaller steps for fine tuning: Results in faster convergence
and better solutions

Time-dependent schedules
Piecewise constant: pre-determined η for each epoch)
Exponential: η(t) = η(0) exp(−t/r) (r ∼ training set size)
Reciprocal: η(t) = η(0)(1 + t/r)−c (c ∼ 1)

Performance-dependent η – e.g. “NewBOB”: fixed η until
validation set stops improving, then halve η each epoch (i.e.
constant, then exponential)

Weight-dependent η (e.g. AdaGrad, RMSProp) – control η
based on moving average of gradients for the weight

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 3

Recap: Backprop Training with Weight Decay

∂En

∂wi
=
∂(En

train + EL2)

∂wi

=
∂En

train

∂wi
+ β

∂EL2

∂wi

=
∂En

train

∂wi
+ βwi

∆wi = −η
(
∂En

train

∂wi
+ βwi

)

Weight decay corresponds to adding EL2 = 1/2
∑

i w
2
i to the

error function

Addition of complexity terms is called regularisation

Weight decay is sometimes called L2 regularisation

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 4

L1 Regularisation

L1 Regularisation corresponds to adding a term based on
summing the absolute values of the weights to the error:

En = En
train︸ ︷︷ ︸

data term

+ βEn
L1︸ ︷︷ ︸

prior term

= En
train + β|wi |

Gradients

∂En

∂wi
=
∂En

train

∂wi
+ β

∂EL1

∂wi

=
∂En

train

∂wi
+ β sgn(wi)

Where sgn(wi) is the sign of wi :
sgn(wi) = 1 if wi > 0 and sgn(wi) = −1 if wi < 0

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 5

L1 vs L2

L1 and L2 regularisation both have the effect of penalising
larger weights

In L2 they shrink to 0 at a rate proportional to the size of the
weight (βwi)
In L1 they shrink to 0 at a constant rate (β sgn(wi))

Behaviour of L1 and L2 regularisation with large and small
weights:

when |wi | is large L2 shrinks faster than L1
when |wi | is small L1 shrinks faster than L2

So L1 tends to shrink some weights to 0, leaving a few large
important connections – L1 encourages sparsity

EL1(0) is undefined; we take sgn(0) = 0

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 6

Adding “fake” training data

Generalisation performance goes with the amount of training
data (change MNISTDataProvider to give training sets of
1 000 / 5 000 / 10 000 examples to see this)

Given a finite training set we could create further training
examples...

Create new examples by making small rotations of existing data
Add a small amount of random noise

Using “realistic” distortions to create new data is better than
adding random noise

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 7

Model Combination

Combining the predictions of multiple models can reduce
overfitting

Model combination works best when the component models
are complementary – no single model works best on all data
points
Creating a set of diverse models

Different NN architectures (number of hidden units, number of
layers, hidden unit type, input features, type of regularisation,
...)
Different models (NN, SVM, decision trees, ...)

How to combine models?
Average their outputs
Linearly combine their outputs
Train another “combiner” neural network whose input is the
outputs of the component networks
Architectures designed to create a set of specialised models
which can be combined (e.g. mixtures of experts)

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 8

Dropout

Dropout is a way of training networks to behave so that they
have the behaviour of an average of multiple networks

Dropout training:

Each mini-batch randomly delete a fraction (say half) of the
hidden units (and their related weights and biases)
Them process the mini-batch (forward and backward) using
this modified network, and update the weights
Restore the deleted units/weights, choose a new random
sunset of hidden units to delete and repeat the process

When training is complete the network will have learned a
complete set of weights and biases, all learned when half the
hidden units are missing. (To compensate for this, in the final
network we halve the values of the outgoing weights from
each hidden unit)

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 9

Why does Dropout work?

Each mini-batch is like training a different network, since we
randomly select to dropout half the neurons

So we can imagine dropout as combining an exponential
number of networks

Since the component networks will be complementary and
overfit in different ways, dropout is implicit model combination

Also interpret dropout as training more robust hidden unit
features – each hidden unit cannot rely on all other hidden
unit features being present, must be robust to missing features

Dropout has been useful in improving the generalisation of
large-scale deep networks

Annealed Dropout: Dropout rate schedule starting with a
fraction p units dropped, decreasing at a constant rate to 0

Initially training with dropout
Eventually fine-tune all weights together

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 10

tanh

tanh(x) =
ex − e−x

ex + e−x
; sigmoid(x) =

1 + tanh(x/2)

2

Derivative:
d

dx
tanh(x) = 1− tanh2(x)

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 11

tanh hidden units

tanh has same shape as sigmoid but has output range ±1

Results about approximation capability of sigmoid networks
also apply to tanh networks

Possible reason to prefer tanh over sigmoid: allowing units to
be positive or negative allows gradient for weights into a
hidden unit to have a different sign

Hidden

Hidden

h
(2)
H

h
(2)
kh

(2)
1

�
(2)
k

h
(1)
jh

(1)
1

h
(1)
H

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 12

Rectified Linear Unit – ReLU

relu(x) = max(0, x)

Derivative:
d

dx
relu(x) =

{
0 if x ≤ 0

1 if x > 0

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 13

ReLU hidden units

Similar approximation results to tanh and sigmoid hidden units

Empirical results for speech and vision show consistent
improvements using relu over sigmoid or tanh

Unlike tanh or sigmoid there is no positive saturation –
saturation results in very small derivatives (and hence slower
learning)

Negative input to relu results in zero gradient (and hence no
learning)

Relu is computationally efficient: max(0, x)

Relu units can “die” (i.e. respond with 0 to everything)

Relu units can be very sensitive to the learning rate

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 14

Maxout units

Unit that takes the max of two linear functions zi = wihL−1:

h = max(z1, z2)

(if w2 = 0 then we have Relu)

Has the benefits of Relu (piecewise linear, no saturation),
without the drawback of dying units

Twice the number of parameters

maxmax
Layer L

+ ++

Layer L-1

+

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 15

Generalising maxout

Units can take the max over G linear functions zi :

h =
G

max
i=0

(zi)

Maxout can be generalised to other functions, e.g. p-norm

h = ||z||p =

(
G∑

i=0

|zi |p
)1/p

Typically p = 2

p can be learned by gradient descent.
(Exercise: What is the gradient ∂E/∂p for a p-norm unit?)

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 16

Summary

Further approaches to improve generalisation

L1 regularisation
Creating additional training data
Model combination
Dropout

Hidden unit transfer functions

tanh
ReLU
Maxout

Reading:
Michael Nielsen, chapter 3 of Neural Networks and Deep
Learning
http://neuralnetworksanddeeplearning.com/chap3.html

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 17

Postscript:

Derivatives of Transfer Functions

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 18

Sigmoid hidden layer

. . . .

. . . . g ggg

. . . . + +++

+ + + +. . . .

f f f f. . . .
Softmax

Sigmoid

yk

xi

a
(1)
j

a
(2)
k

w
(2)
kj

w
(1)
ji

Outputs

Inputs

Hidden layerh
(1)
j

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 19

Jacobian of the transfer function
Sigmoid

(The Jacobian J is the matrix of partial derivatives)

J =




∂h0
∂a0

· ∂h0
∂ai

· ∂h0
∂aH

. . .
∂hi
∂a0

· ∂hi
∂ai

· ∂hi
∂aH

. . .
∂hH
∂a0

· ∂hH
∂ai

· ∂hH
∂aH




=




∂h0
∂a0

· 0 · 0

. . .

0 · ∂hi
∂ai

· 0

. . .

0 · 0 · ∂hH
∂aH




=




h0(1− h0) · 0 · 0
. . .

0 · hi (1− hi) · 0
. . .

0 · 0 · hH(1− hH)




MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 20

Recap: Backprop with a sigmoid hidden layer

∂En

∂w
(1)
ji

=
∂En

∂a
(1)
j︸ ︷︷ ︸

δ
(1)
j

·
∂a

(1)
j

∂w
(1)
ji︸ ︷︷ ︸
xi

For a sigmoid hidden unit:

δ
(1)
j =

∑

c∈Layer 2

∂En

∂a
(2)
c

· ∂a
(2)
c

∂a
(1)
j

=


 ∑

c∈Layer 2
δ
(2)
c ·

∂a
(2)
c

∂h
(1)
j


 ·

∂h
(1)
j

∂a
(1)
j

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 21

Softmax hidden layer

. . . .

. . . . g ggg

. . . . + +++

+ + + +. . . .

f f f f. . . .
Softmax

Softmax

yk

xi

a
(1)
j

a
(2)
k

w
(2)
kj

w
(1)
ji

Outputs

Inputs

Hidden layerh
(1)
j

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 22

Jacobian of the transfer function
Softmax

J =




∂h0
∂a0

· ∂h0
∂ai

· ∂h0
∂aH

. . .
∂hi
∂a0

· ∂hi
∂ai

· ∂hi
∂aH

. . .
∂hH
∂a0

· ∂hH
∂ai

· ∂hH
∂aH




=




h0(1− h0) · −h0hi · −h0hH
. . .

−hih0 · hi (1− hi) · −hihH
. . .

−hHh0 · −hHhi · hH(1− hH)




Jij = hi (δij − hj)
MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 23

Backprop with a softmax hidden layer

For softmax, the normlisation term makes it more complicated

δ
(1)
j =

∑

c∈Layer 2

∂En

∂a
(2)
c

· ∂a
(2)
c

∂a
(1)
j

=
∑

c∈Layer 2
δ
(2)
c ·

∑

k∈Layer 1

∂a
(2)
c

∂h
(1)
k

· ∂h
(1)
k

∂a
(1)
j

=
∑

c∈Layer 2
δ
(2)
c ·

∑

k∈Layer 1
w

(2)
ck h

(1)
k (δkj − h

(1)
j)

MLP Lecture 5 Regularisation (cont.) Hidden Unit Transfer Functions 24

