
First Coursework & Generalisation

Steve Renals

Machine Learning Practical — MLP Lecture 4
14 October 2015

MLP Lecture 4 First Coursework & Generalisation 1

Recap: Training multi-layer networks

Outputs

�
(3)
1 �

(3)
` �

(3)
K

Hidden

Hidden

y1 y` yK

w
(3)
1k

w
(3)
`k

w
(3)
Kk

w
(2)
1j

w
(2)
kj

w
(2)
Hj

h
(2)
Hh

(2)
k

h
(2)
1

�
(2)
1 �

(2)
k

�
(2)
H

h
(1)
j

w
(1)
ji

�
(1)
j

xi
Inputs

MLP Lecture 4 First Coursework & Generalisation 2

Coursework 1 – Training multi-layer networks to classify
MNIST digits

Building on the lab example in which single layer networks are
trained on MNIST:

Task 1 Implement a Sigmoid layer (by extending the
Linear layer class)

Task 2 Implement a Softmax layer (by extending the
Linear layer class)

Task 3 Train a one-hidden-layer network and reporting
classification results, exploring the effect of learning
rates, and plotting Hinton Diagrams for the hidden
units and output units.

Task 4 Experiment with different numbers of hidden layers.

Any Questions?

MLP Lecture 4 First Coursework & Generalisation 3

Generalization

How many hidden units (or, how many weights) do we need?

How many hidden layers do we need?

Generalization: what is the expected error on a test set?

Causes of error

Network too “flexible”: Too many weights compared with
number of training examples
Network not flexible enough: Not enough weights (hidden
units) to represent the desired mapping

When comparing models, it can be helpful to compare
systems with the same number of trainable parameters (i.e.
the number of trainable weights in a neural network)

Optimizing training set performance does not necessarily
optimize test set performance....

MLP Lecture 4 First Coursework & Generalisation 4

Training / Test / Validation Data

Partitioning the data...

Training data – used in as labelled data when training the
network
Validation data – frequently used to measure the error of a
network on “unseen” data (e.g. after each epoch)
Test data – less frequently used “unseen” data, ideally only
used once

Frequent use of the same test data can indirectly “tune” the
network to that data (e.g. by influencing choice of
hyperparameters such as learning rate, number of hidden
units, number of layers,)

MLP Lecture 4 First Coursework & Generalisation 5

Measuring generalisation

Generalization Error – The predicted error on unseen data.
How can the generalization error be estimated?

Training error?

Etrain = −
∑

training set

K∑

k=1

tnk ln yn
k

Validation error?

Eval = −
∑

validation set

K∑

k=1

tnk ln yn
k

MLP Lecture 4 First Coursework & Generalisation 6

Cross-validation

Optimize network performance given a fixed training set

Hold out a set of data (validation set) and predict
generalization performance on this set

1 Train network in usual way on training data
2 Estimate performance of network on validation set

If several networks trained on the same data, choose the one
that performs best on the validation set (not the training set)

n-fold Cross-validation: divide the data into n partitions;
select each partition in turn to be the validation set, and train
on the remaining (n − 1) partitions. Estimate generalization
error by averaging over all validation sets.

MLP Lecture 4 First Coursework & Generalisation 7

Overtraining

Overtraining corresponds to a network function too closely fit
to the training set (too much flexibility)

Undertraining corresponds to a network function not well fit
to the training set (too little flexibility)

Solutions

If possible increasing both network complexity in line with the
training set size
Use prior information to constrain the network function
Control the flexibility: Structural Stabilization
Control the effective flexibility: early stopping and
regularization

MLP Lecture 4 First Coursework & Generalisation 8

Structural Stabilization

Directly control the number of weights:

Compare models with different numbers of hidden units

Start with a large network and reduce the number of weights
by pruning individual weights or hidden units

Weight sharing — use prior knowledge to constrain the
weights on a set of connections to be equal.
→ Convolutional Neural Networks

MLP Lecture 4 First Coursework & Generalisation 9

Early Stopping

Use validation set to decide when to stop training

Training Set Error monotonically decreases as training
progresses

Validation Set Error will reach a minimum then start to
increase

MLP Lecture 4 First Coursework & Generalisation 10

Early Stopping

Validation

Training

E

tt*

MLP Lecture 4 First Coursework & Generalisation 11

Early Stopping

Use validation set to decide when to stop training

Training Set Error monotonically decreases as training
progresses

Validation Set Error will reach a minimum then start to
increase

Best generalization predicted to be at point of minimum
validation set error

“Effective Flexibility” increases as training progresses

Network has an increasing number of “effective degrees of
freedom” as training progresses

Network weights become more tuned to training data

Very effective — used in many practical applications such as
speech recognition and optical character recognition

MLP Lecture 4 First Coursework & Generalisation 12

Weight Decay

Weight decay puts a “spring” on weights

If training data puts a consistent force on a weight, it will
outweigh weight decay

If training does not consistently push weight in a direction,
then weight decay will dominate and weight will decay to 0

Without weight decay, weight would walk randomly without
being well determined by the data

Weight decay can allow the data to determine how to reduce
the effective number of parameters

MLP Lecture 4 First Coursework & Generalisation 13

Penalizing Complexity

Consider adding a complexity term Ew to the network error
function, to encourage smoother mappings:

E = Etrain︸ ︷︷ ︸
data term

+ βEW︸ ︷︷ ︸
prior term

Etrain is the usual error function:

En
train = −

K∑

k=1

tnk ln ynk

If we choose the complexity term to be:

EW =
1

2

∑

i

w2
i

Then we have a simple partial derivative:

∂EW

∂wi
= wi

MLP Lecture 4 First Coursework & Generalisation 14

Backprop Training with Weight Decay

∂En

∂wi
=
∂(En

train + EW)

∂wi

=

(
∂En

train

∂wi
+ β

∂EW

∂wi

)

=

(
∂En

train

∂wi
+ βwi

)

∆wi = −η
(
∂En

train

∂wi
+ βwi

)

Weight decay corresponds to adding Ew = 1/2
∑

i w
2
i to the

error function
Addition of complexity terms is called regularization
Weight decay is sometimes called L2 regularization
EW should be easily differentiable (for backprop) and should
be some sort of flexibility measure

MLP Lecture 4 First Coursework & Generalisation 15

Summary

The first coursework

Generalisation

Training / test / validation

Early stopping and cross-validation

Weight decay and regularization

Reading:
Michael Nielsen, chapters 2 & 3 of Neural Networks and Deep
Learning
http://neuralnetworksanddeeplearning.com/

Chris Bishop, Chapters 6 & 9 of Neural Networks for Pattern
Recognition (although a lot more detail than needed for now)

MLP Lecture 4 First Coursework & Generalisation 16

