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Single layer network

Single-layer network, 1 output, 2 inputs + bias
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Geometric interpretation

Single-layer network, 1 output, 2 inputs + bias
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Example data (three classes)
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Plot of Decision regions

layer networks are limited to linear classification boundaries

Single
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Single layer network trained on MNIST Digits

10 Outputs

@OOEROEOOG®E®

785x10 weight matrix

« @ OO0 - O0O000

784 Inputs + bias

Output weights define a “template” for each class
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Hinton Diagrams

Visualise the weights for class k
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Hinton diagram for single layer network trained on MNIST

@ Weights for each class act as a “discriminative template”

@ Inner product of class weights and input to measure closeness
to each template

@ Classify to the closest template (maximum value output)
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From templates to features
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@ Good classification needs to cope with the variability of real
data: scale, skew, rotation, translation, ....

@ Very difficult to do with a single template per class

@ Could have multiple templates per task... this will work, but
we can do better

@ Use features rather than templates
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(images from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chapl.html)
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http://neuralnetworksanddeeplearning.com/chap1.html

Incorporating features in neural network architecture

@ Layered processing: inputs - features - classification

@ How to obtain features - learning!
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Incorporating features in neural network architecture

@ Layered processing: inputs - features - classification

@ How to obtain features - learning!
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Incorporating features in neural network architecture

@ Layered processing: inputs - features - classification

@ How to obtain features - learning!
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Multi-layer network for MNIST

hidden layer

(n = 15 neuarons)

input layer
(784 neurons)

(image from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chapl.html)
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Training MLPs: Credit assignment

Hidden units make training the weights more complicated,
since the hidden units affect the error function indirectly via
all the outputs

The Credit assignment problem: what is the “error” of a
hidden unit? how important is input-hidden weight Wj(,-l) to
output unit k?

Solution: Gradient descent — requires derivatives of the error
with respect to each weight

Algorithm: back-propagation of error (backprop)

Backprop gives a way to compute the derivatives. These
derivatives are used by an optimisation algorithm (e.g.
gradient descent) to train the weights.
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Training MLPs: Error function and required gradients

@ Cross-entropy error function:
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@ Required gradients:
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single-layer network:
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Training MLPs: Input-to-hidden weights
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To compute 5}1) = BE”/an(-l), the error signal for hidden unit j,

we must sum over all the output units’ contributions to 5}1):

RO ZK: 9E" 03
/ c=1 83(52) 83(-1)

K 2 (1)
_ 259.33&) oh
— ontY 8aj(-1)

Z 5 h(l))

MLP Lecture 3




Training MLPs: Gradients
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Back-propagation of error: hidden unit error signal
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Back-propagation of error: hidden unit error signal

MLP Lecture 3 23



Back-propagation of error: hidden unit error signal

Hidden units
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Back-propagation of error

@ The back-propagation of error algorithm is summarised as
follows:

© 000

Apply an input vectors from the training set, x, to the network
and forward propagate to obtain the output vector y
Using the target vector t compute the error E"”

Evaluate the error signals 5,&2) for each output unit

)

Evaluate the error signals 6j1 for each hidden unit using
back-propagation of error

Evaluate the derivatives for each training pattern, summing to
obtain the overall derivatives

@ Back-propagation can be extended to multiple hidden layers,
in each case computing the 6(Ys for the current layer as a
weighted sum of the §(t1)s of the next layer
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Training with multiple hidden layers

Outputs
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Understanding what single-layer networks compute

How multi-layer networks allow feature computation

Training multi-layer networks using back-propagation of error
Reading:

Michael Nielsen, chapter 1 of Neural Networks and Deep

Learning
http://neuralnetworksanddeeplearning.com/chapl.html

Chris Bishop, Sections 3.1, 3.2, and Chapter 4 of Neural
Networks for Pattern Recognition
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