Single layer network

Single-layer network, 1 output, 2 inputs + bias
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Geometric interpretation Example data (three classes)

Data
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Bishop, sec 3.1
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Classification regions with single-layer network Single layer network trained on MNIST Digits

Plot of Decision regions 10 Outputs
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Single-layer networks are limited to linear classification boundaries Output weights define a “template” for each class
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Hinton diagram for single layer network trained on MNIST

Visualise the weights for class k
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From templates to features
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@ Good classification needs to cope with the variability of
data: scale, skew, rotation, translation, ....

o Very difficult to do with a single template per class

we can do better
@ Use features rather than templates

@ Could have multiple templates per task... this will work,
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(images from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chapl.html)
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o Weights for each class act as a “discriminative template”

@ Inner product of class weights and input to measure closeness
to each template

o Classify to the closest template (maximum value output)

Incorporating features in neural network architecture

o Layered processing: inputs - features - classification
@ How to obtain features - learning!
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Incorporating features in neural network architecture Incorporating features in neural network architecture

@ Layered processing: inputs - features - classification
@ How to obtain features - learning!
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@ Layered processing: inputs - features - classification
@ How to obtain features - learning!
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Multi-layer network
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Training MLPs: Credit assignment

Hidden units make training the weights more complicated,
since the hidden units affect the error function indirectly via
all the outputs

The Credit assignment problem: what is the “error” of a
hidden unit? how important is input-hidden weight Wj(l-l) to
output unit k7

Solution: Gradient descent — requires derivatives of the error
with respect to each weight

Algorithm: back-propagation of error (backprop)

Backprop gives a way to compute the derivatives. These
derivatives are used by an optimisation algorithm (e.g.
gradient descent) to train the weights.
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Training MLPs: Input-to-hidden weights
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Multi-layer network for MNIST

(image from: Michael Nielsen, Neural Networks and Deep Learning,
http://neuralnetworksanddeeplearning.com/chapl.html)
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Training MLPs: Error function and required gradients

@ Cross-entropy error function:

C
EN=-> tlny]
k=1
@ Required gradients:
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@ Gradient for hidden-to-output weights similar to

single-layer network:
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Training MLPs: Gradients
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Back-propagation of error: hidden unit error signal Back-propagation of error
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Hidden units
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@ The back-propagation of error algorithm is summarised as
follows:

@ Apply an input vectors from the training set, x, to the network
and forward propagate to obtain the output vector y

@ Using the target vector t compute the error E”
Evaluate the error signals 5,(<2) for each output unit

back-propagation of error
Evaluate the derivatives for each training pattern, summing to
obtain the overall derivatives

o
@ Evaluate the error signals 5}1) for each hidden unit using
o

@ Back-propagation can be extended to multiple hidden layers,
in each case computing the 8s for the current layer as a
weighted sum of the 6+ Vs of the next layer
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Understanding what single-layer networks compute
How multi-layer networks allow feature computation
Training multi-layer networks using back-propagation of error

Reading:

Michael Nielsen, chapter 1 of Neural Networks and Deep
Learning
http://neuralnetworksanddeeplearning.com/chapl.html
Chris Bishop, Sections 3.1, 3.2, and Chapter 4 of Neural
Networks for Pattern Recognition
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