

# Multi-agent and Semantic Web Systems: Agent Communication

Fiona McNeill

School of Informatics

14th March 2013

## Agents and this course



- Agents can be thought of as representing the ultimate vision of the Semantic Web: fully autonomous systems dynamically interacting in complex ways.
- This lecture and the next lecture discuss what these systems would be like and would kind of technology this would require.
- The final lecture discusses how they could utilise the Semantic Web as a Multi-agent system to fully realise this goal.

# What are Agents?





- Situated in an environment;
- can sense the environment, and
- perform actions.

## What are Agents?



#### 'Intelligent' characteristics of agents:

- autonomy
- reasoning ability
- learning ability
- mobility
- sociability
- cooperation
- negotiation

#### Autonomy

- Can initiate tasks without external intervention.
- Behaviour is based on experience as well as in-built knowledge.

# Multi-Agent Systems (MAS)



- Distributed system which incorporates independent agents.
- The collection of agents interact, and
- solve problems that are outside their individual capacities.
- Focus on properties that emerge from cooperation (vs. capabilities of individual agents)
- 'standard' distributed system: coordination must be specified in advance
- Multi-Agent system: (some aspects of) coordination achieved dynamically at run-time
- Possible advantages:
  - fault-tolerance
  - scalability
  - concurrency

## Agent Communication, I



#### Why communicate?

- Information Exchange: share knowledge;
- Collaboration: optimising use of resources and distribution of tasks, coordinating execution;
- Negotiation: reaching agreement in the presence of conflict

## Agent Communication, 2



- Communication involves sharing at various levels, including
  - how to describe states of affairs (vocabulary, grammar),
  - how to carry out speech acts (performative verbs),
  - how to engage in dialogue.
- Main goal of communication: influence other agents; e.g., to make them perform actions or to make them believe certain propositions.
- Other agent decides whether to perform action or believe proposition.

#### Speech Acts



- Most treatments of communication in (multi-)agent systems borrow their inspiration from speech act theory.
- Speech act theories are pragmatic theories of language, i.e., theories of language use;
- attempt to account for how natural language is used to achieve goals and intentions.
- Original theory by J.L.Austin, How to do things with words.

Speech Act Theory: Communication as action

Speech Acts: Performatives "change the state of the world like

a physical action"; everything we utter is uttered

with the intention of satisfying some goal or intention

## Kinds of Speech Act



- Locutionary act: the act of generating sounds that are linked together by grammatical conventions so as to say something meaningful.
- Illocutionary act: the speech act of doing something else in the process of uttering meaningful language.
  - I will gladly pay you £1.00 next week
  - illocutionary act of making a promise
- Perlocutionary act: the contingent effect on those who hear a meaningful utterance.
  - By telling a ghost story late at night, one may accomplish the perlocutionary act of frightening someone.

#### **Performatives**



Speech acts often divided into two components:

- performative verb: request, inform, promise, ...
- propositional content: the door is closed

 $\phi$  = the door is closed

#### **Example Performatives**

REQUEST +  $\phi \Rightarrow$  Please close the door!

INFORM +  $\phi \Rightarrow$  The door is closed.

INQUIRE +  $\phi \Rightarrow$  Is the door closed?

# More Speech Act Theory



Searle (1972) categorization of performatives:

Assertives: informing, claiming something is true

Directives: requesting, commanding

Commissives: promising, refusing

Declaratives: making change to state of world (e.g. marrying)

Expressives: expressing mental states

Like all taxonomies, this is open to debate.

## Conditions on Speech Acts



- Austin & Searle described conditions under which speech acts are successful.
- Austin's felicity conditions:
  - Has to be conventional procedure for carring out speech act;
  - procedure has to executed correctly;
  - act has to be sincere, uptake must be completed as far as possible.
- Searle:
  - Preparatory conditions must hold (e.g., requested action can be performed, speaker must believe this, hearer not already intending to perform action).
  - Sincerity conditions (speaker wants action to be performed).

# DARPA Knowledge Sharing Effort (KSE)



- http://www-ksl.stanford.edu/knowledge-sharing/
- Project from early '90s aimed at developing techniques, tools and reusable resources to support building large-scale knowledge-based systems and knowledge bases.
- Results in the area of knowledge representation:

KIF (propositional content) Syntax

Semantics Ontolingua (language for defining sharable ontologies)

Pragmatics KQML (high-level interaction language)

#### **ACLs**



- KIF and KQML are both Agent Communication Languages (ACLs)
- KQML (Knowledge Query and Manipulation Language). 'Outer' language; defines message envelope format.
- KIF (Knowledge Interchange Format). 'Inner' language; defines message content.
  - Essentialy a LISP-based notation for First Order Logic.
  - Intended as interlingua for encoding declarative knowledge.
  - Features: semantics independent of implementation; non-decidable, 'human readable'
  - Current specification at <a href="http://logic.stanford.edu/kif">http://logic.stanford.edu/kif</a>

#### **KIF**



#### Possible to express:

- properties of things in a domain (John has a mobile phone, Mary has short hair)
- relationships between things in a domain (Luke is married to Jane)
- general properties of a domain (every student has a matriculation number)
- Standard vocabulary for data structures (numbers, strings etc., complex objects, lists etc.) and methods on them.

#### KIF Examples



#### The temperature of m1 is 83 Celsius

(= (temperature m1) (scalar 83 celsius)

#### X is a bachelor iff X is a man and is not married

```
(defrelation bachelor (?x) :=
(and (man ?x)
(not (married ?x))))
```

#### If X is a person then X is a mammal

(defrelation person (?x) :=> (mammal ?x))

## **KQML**



- Knowledge Query and Manipulation Language (KQML).
- High-level, message-oriented language for information exchange.
- Makes no assumptions about:
  - transport mechanism;
  - content language;
  - ontology used in message content.
- Message types particularly oriented towards multi-agent communication.





performative



- performative
- parameter (an attribute/value pair)



- performative
- parameter (an attribute/value pair)
- declarative message content

# **KQML** Parameters



| Parameter                    | Interpretation                        |
|------------------------------|---------------------------------------|
| :content                     | content of message                    |
| :language                    | formal language of message con-       |
|                              | tent                                  |
| :ontology                    | vocabulary employed by message        |
| :force                       | will sender ever deny content of      |
|                              | message?                              |
| :reply-with <label></label>  | whether the sender expects a re-      |
|                              | ply, and if so, a label for the reply |
| :in-reply-to <label></label> | the expected label in a reply         |
| :sender                      | sender                                |
| :receiver                    | receiver                              |

# KQML Example Performatives



| <b>Performative</b> | Interpretation        |
|---------------------|-----------------------|
| ask-if              | Is it true that?      |
| achieve             | Make it true that     |
| tell                | It is true that       |
| reply               | The answer is         |
| evaluate            | Simplify the sentence |

#### Basic Query Dialogue



#### Agent A sends the following performative to agent B:

```
(evaluate :language KIF
```

:ontology motors

:reply-with q1

:content (val (torque motor1) (sim-time 5)))

#### Agent B replies with:

(reply :language KIF

:ontology motors

:in-reply-to q1

:content (scalar 12 kgf))

#### KQML/KIF Evaluation



- KQML/KIF widely adopted, but
- list of performatives (~ 41) not fixed, and lacks clear rationale;
- no formal semantics for performatives;
- lacks commissives (e.g., promises).

#### FIPA ACL, I



- FIPA ACL (Agent Communication Language): a specification for interagent communication via message passing.
  - Assumes that agents have Beliefs, Desires and Intentions (BDI model)
  - FIPA ACL is similar in design to KQML, but gives an explicit BDI-based semantics to the performatives, using a Semantic language called SL.

#### 

#### FIPA ACL, 2



- Basic performatives: inform, request
- All others (~ 20) defined in terms of these two.
- Semantics divided up into
  - feasibility precondition, and
  - rational effect
- Semantics is formalized using following modal operators:

| Statement      | Interpretation                                                                               |
|----------------|----------------------------------------------------------------------------------------------|
| $B_i\phi$      | $\emph{i}$ believes that $\phi$                                                              |
| $Bif_i\phi$    | $B_i\phi \vee B_i\neg\phi$ , i.e., <i>i</i> has a definite opinion about the truth of $\phi$ |
| $I_i\phi$      | $i$ has the intention of bringing about $\phi$                                               |
| Agent(lpha,i)  | $\emph{i}$ is capable of carrying out action $lpha$                                          |
| Done( $lpha$ ) | action $lpha$ has been carried out                                                           |
| $Uif_i\phi$    | $\emph{i}$ is uncertain whether or not $\phi$ [ignored here]                                 |

#### Inform



#### $\langle \mathsf{i}, \mathsf{inform}(\mathsf{j}, \phi) \rangle$

feasibility precondition  $B_i \phi \wedge \neg B_i Bi f_j \phi$ 

rational effect:  $B_{j}\phi$ 

inform that  $\phi$  indicates that the sending agent:

- ullet holds that  $\phi$  is true,
- does not already believe that the receiver j has any knowledge of the truth of the  $\phi$ , and
- ullet intends that j also comes to believe that  $\phi$  is true.

#### Request



#### $\langle i, request(j, \alpha) \rangle$

feasibility precondition  $B_iAgent(\alpha, j) \land \neg B_iI_jDone(\alpha)$ rational effect:  $Done(\alpha)$ 

request that  $\phi$  indicates that the sending agent:

- holds that j is capable of carrying out action  $\alpha$ , and
- does not believe that j is intending to bring it about that  $\alpha$  is carried out.

For more details, and information about other performatives, see http://www.fipa.org/specs/fipa00037/SC00037J.pdf

# Agent Protocols



- Agents can have divergent interests (e.g., seller and buyer) but still cooperate
- Use protocols:
  - defines 'rules of engagement' between agents
  - Example: an QUERY message is followed by an INFORM message
  - often modelled as a finite-state machine
- Protocols will also contain more detailed specifications depending on the type of interaction
- Example: fixed price sale vs. an auction

#### Protocols as FSMs



- Protocols are often implemented as Finite State Machines.
- Each state represents a stage in the conversation sometimes thought of as an information state.
- Arcs represent the exchanged messages that allow transition to a new state.
- Valid messages depend on the current state of the conversation represented by outgoing arcs.
- Final states represent completed conversations.

# Example FSM for a Conversation





#### Protocols in FIPA ACL



- Notion of agent 'protocol' often refers to stereotyped pattern of conversation between agents.
- Available protocols are usually pre-specified by the agent designer.
- Agents somehow need to discover which protocol to follow.
- Choice of protocol to follow could be negotiated,
- but in FIPA ACL, convention is to place name of the protocol in the :protocol parameter of the message.

# FIPA-Query-Protocol





## Explanation of FIPA-Query-Protocol



UML Sequence Diagram. The diamond symbol indicates a decision that can result in zero or more communications being sent.

- Initiator requests Participant to perform a inform action:
  - query-if: whether proposition P is true or false
  - query-ref: query about specified objects
- Participant processes request and decides whether to accept or refuse.
- If decides to accept, "agreed" becomes true.
- Participant uses inform-t/f to assert whether P is true or false;
- uses inform-result to refer to object that was queried about.

## Problems with Mentalistic Approach



- How can the sender rely on the receiver to adopt certain beliefs?
- More generally, the behaviour of an agent does not give unambiguous information about its mental state.
- Alternative approach in terms of social commitments:
  - agent commits / promises to carry out certain actions;
  - e.g., buyer in an auction commits to paying for goods;
  - fulfilment of commitments can be verified.

# Summary



- Focus on agent-agent communication;
- Speech act theory provides theoretical framework for ACLs;
- Two examples:
  - KQML/KIF
  - FIPA-ACL

# Reading



- Reading: Wooldridge An Introduction to MultiAgent Systems, Chapter 8
- See also Wooldridge's web site: <a href="http://www.csc.liv.ac.uk/~mjw/pubs/imas">http://www.csc.liv.ac.uk/~mjw/pubs/imas</a>
- Odell, James, Van Dyke Parunak, H. and Bauer, B., Representing Agent Interaction Protocols in UML. In: Agent-Oriented Software Engineering, Ciancarini, P. and Wooldridge, M., Eds., Springer, pp. 121–140 Berlin, 2001. http://www.jamesodell.com/Rep\_Agent\_Protocols.pdf