
Logic Programming Alan Smaill

21/10/15

Tutorial for week 6 (26-30 Oct)

Definite clause grammars, Generate and Test

1. DCG example (This example is from LPN.)

Let anb2n be the formal language which contains all strings of the following form: an

unbroken block of letters a of length n followed by an unbroken block of bs of length

2n , and nothing else. For example, abb , aabbbb, and aaabbbbbb belong to anb2n,

and so does the empty string. Write a DCG that generates this language.

2. DCGs with parameters
Recall that the Kleene star expression a∗ denotes the set of all strings of the form

an, where n ≥ 0. In Prolog, we can use lists to model sequences, interpreting such a

regular language as: { [], [a], [a, a], [a, a, a], . . . }

(a) Write a DCG (using one or two rules) that de�nes a nonterminal astar that

accepts the regular language a∗. (Be careful to avoid left-recursion).

(b) Write a DCG that de�nes a parametrised nonterminal star(X) such that, for any

atom a, star(a) accepts the regular language a∗.

3. Parsing expressions Consider the following simple expression language:

� A number n = 1, 2, 3,. . . is an expression

� If e1 and e2 are expressions then so is e1 + e2

� If e1 and e2 are expressions then so is e1 − e2

� If e1 and e2 are expressions then so is e1 ∗ e2

� If e1 and e2 are expressions then so is e1/e2

� If e is an expression then so is (e)

The input to the parser is provided as a list of tokens. A token is either a number or

an atom of the form:

’+’ ’-’ ’/’ ’*’ ’(’ ’)’

The predicate token/1 recognises tokens:

token(X) :- number(X).

token(’+’). token(’-’). token(’*’).

token(’/’). token(’(’). token(’)’).

(a) (*) Write a grammar de�ning nonterminal exp that correctly parses fully-parenthesised

expressions.

1

(b) (*) Building on the expression parser in the previous question, parametrise the

nonterminals in the grammar with a number V that is the value of the expression

(evaluated using is).

Thus, evaluating exp(X,[’(’,2,’+’,2,’)’],[]) should yield X=4.

4. Generate and Test

Recall that it is not safe to use Prolog negation as failure where the query when called

is not ground. Here you are asked to provide a generate and test way round this,

where candidate ground solutions are generated so that negation can be safely used

as part of the test.

Alice, Bob, Charlie, David, and Eve live on a row of houses on the same street, and

each have di�erent jobs: one doctor, one teacher, one dentist, one lawyer, and one

�re�ghter. The following facts declaratively describe them:

male(bob). male(charlie).

male(david).

female(alice). female(eve).

neighbour(alice, bob). neighbour(bob, charlie).

neighbour(charlie, david). neighbour(david, eve).

The following additional constraints hold:

� Bob is not the doctor.

� The teacher and �re�ghter are both male.

� The �re�ghter and lawyer are neighbours.

� The dentist has a female neighbour.

(a) Being neighbours is symmetric, but the neighbour/2 predicate is not. Write a

predicate neighbour sym/2 such that neighbour sym(A,B) holds if A is a neigh-

bour of B or vice versa.

(b) An assignment of jobs to people is a 5-tuple (Doc,Tea,Den,Law,Fir) where

each element is a di�erent person's name, and Doc is the name of the doc-

tor, Tea is the name of the teacher, etc. De�ne a predicate test/5 such that

test(Doc,Tea,Den,Law,Fir) succeeds when given a ground assignment that sat-

is�es the constraints.

(c) De�ne a generator predicate generate/5 that succeeds repeatedly by generating

all possible assignments. (Hint: It may be easier to do this by working with

lists.)

(d) Write a predicate solve/5 that succeeds by �nding solutions to the problem.

The solve/5 predicate should succeed repeatedly to �nd all solutions (there are
more than one).

2

