
Logic Programming Alan Smaill

14/10/2015

Tutorial for week 5 (19–23 Oct)

Non-logical features

This tutorial relates to concepts covered in LPN chapters 10{11.

1. Cut

Consider the following facts:

r(1). r(2).

s(1). s(3).

Draw the depth-�rst proof search trees for the following queries, show-

ing each solution as well as each failing branch, and indicating which

branches are discarded by cuts. You should ensure that your answer

makes clear in which order the nodes of the tree are visited.

(a) r(X), !, s(Y)

(b) r(X), s(Y), !

(c) r(X), \+ s(X)

(d) r(X), !, \+ s(X)

(e) r(X), \+ r(X)

(f) \+ \+ r(X)

(g) \+ \+ r(3)

2. Input/Output

Here is a Sicstus Prolog version of rot13/2 which converts a ground
atom as �rst argument into its translation under the rot13 cipher (also
available from web page):

% rot13: only for mode (+,?)

rot13(Str, SR) :-

atom_codes(Str,SL),

maprot(SL, SL1),

atom_codes(SR,SL1).

maprot([],[]).

1



maprot([H|T],[HH|TT]) :- rot(H,HH),

maprot(T,TT).

rot(C, C1) :-

( member(C, "abcdefghijklmABCDEFGHIJKLM"), C1 is C+13, ! )

; ( member(C, "nopqrstuvwxyzNOPQRSTUVWXYZ"), C1 is C-13, ! )

; C1 = C.

De�ne a predicate translate/0 that reads in an atom, encodes it using

rot13/2, writes it to the output stream, and then asks for another

string. You might want to use the goal nl/0 to insert newlines to

separate the input and output.

3. Using Cut

Without using cut, write a predicate split/3 that splits a list of integers

into two lists: one containing the positive ones (and zero), the other

containing the negative ones. For example:

?- split([3,4,-5,-1,0,4,-9],P,N).

should return:

P = [3,4,0,4]

N = [-5,-1,-9].

Then make this program more e�cient, without changing its meaning,

with the help of the cut.

4. (**) Assert/retract

In this problem we will use the assert/1 predicate. This is covered

in Lecture 5, and LPN chapter 11. Essentially, assert/1 adds a fact

or clause to the program dynamically. Many Prolog implementations

use �rst-argument indexing, meaning that it is often a lot faster at

�nding the next rule to apply if the �rst argument of the predicate is

known.

Use assert/1 to de�ne a goal buildrot/0 that always succeeds by

building a dynamic predicate rotA/2 that and use this relation instead

of rot/2 in the code above. This should lead to an improvement in the

space/time e�ciency of rot13 for long strings compared to a version

that re-computes values for every character.

Note: You will need to add a line

2



:- dynamic rotA/2.

to your Prolog �le to declare rotA/2 as a dynamic predicate.

5. (*) Collecting Solutions

This problem uses the findall, setof/3 and bagof/3 and predicates

(discussed in LPN chapter 11).

Suppose we have the following statements of people and age informa-

tion.

person(fred).

person(peter).

person(ann).

person(beth).

person(tom).

person(talullah).

age(peter,10).

age(ann,5).

age(beth,10).

age(tom,8).

(a) Use bagof to work out the list of people whose age is not known.

(b) Use setof to de�ne a predicate that calculates:

i. the set of all people with known ages

ii. the set of all known ages.

(c) Using findall, de�ne a predicate flatten/2 that takes a list of

lists and 
attens it to a list, so that on the success of flatten(Xs,Ys)

each element of Ys is an element of an element of Xs.

Experiment with bagof and setof instead of findall, with dif-

ferent inputs (and quanti�ers) to see the di�erences in behaviour.

(There are a couple of natural variants for each predicate.)

3


