
Logic Programming Alan Smaill

2/10/2015

Tutorial for week 4 (12–16 Oct)

Recursion, trees, lists

1. A notion of binary tree where data is stored at the leave only is given

by the following characterisation:

btree(leaf(L)).

btree(node(TL, TR)) :- btree(TL), btree(TR).

(a) What Prolog term represents this tree labelled by integers:

.

/ \

4 .

/ \

6 8

(b) De�ne a predicate mirror/2 which relates a tree to its (left/right)

mirror image, and check it works on your tree above. Check that

applying it twice returns the original tree.

(c) De�ne a predicate fringe/2 such that fringe(Tree,Fringe)

holds whenFringe is the list of values held in the leaves of the

tree, in left-right order. For example, if yourT is the Prolog rep-

resentation of the tree above, we have fringe(yourT, [4,6,8]).

For this part, your de�nition may use the built-in append/3 pred-

icate but no other built-in or helper functions.

Trace the behaviour of query ?- fringe(yourT,X).

What happens if you pose query ?- fringe(X,[1,2,3,4]) , and

ask for multiple solutions?

What is the complexity of this implementation of fringe/2 ?

You can assume that append/3 is linear in the size of its �rst

argument.

(d) (*) It is possible to write fringe/2 without using append, and

indeed no helper functions at all, such that it runs in time linear

in the size of the tree involved, though this is not so easy to �nd.

Can you �nd such a de�nition, using only pattern matching on

the tree structure?

1

2. Shuffling

Given two lists, a shu�e is a list consisting of alternating elements

from the two lists, starting with the �rst. If one of the lists is empty,

then shu�ing just returns the other list.

For example:

shuffle([],[1,2,3,4],[1,2,3,4]).

shuffle([1,2],[3],[1,3,2]).

shuffle([1,2],[3,4],[1,3,2,4]).

Here is a simple de�nition of shuffle/3:

simple_shuffle([],L,L).

simple_shuffle(L,[],L).

simple_shuffle([X|L],[Y|M],[X,Y|N]) :-

simple_shuffle(L,M,N).

What happens if you ask the query:

?- simple_shuffle([1,2],[3,4],X).

What about ?- simple_shuffle(X,Y,[1,2,3,4]) ?

De�ne an improved shuffle/3 such that if L1 and L2 are ground then

shuffle(L1,L2,L3) returns exactly one answer.

3. (*) Bridge dealing

In a four-player game of bridge, each player gets 13 cards, dealt in

order. Write a predicate deal(Cards, H1, H2, H3, H4) that takes

a �rst argument, and succeeds by binding H1 to the 13 cards received

by player 1 in the deal, etc.

Hint: One strategy is to write four helper predicates deal1 that deals

to player 1, deal2 that deals to player 2, etc.

4. (**) Cutting the deck

Write a predicatecut/3 such that if L is a list with even length, then

cut(L,M,N) succeeds by binding M to the �rst half of L and N to the

second half.

Hint: One can get M and N by generating possible splits of L using

append/3, and de�ning a predicate same length/2 that holds of two

lists whenever they have the same length (ignoring their element val-

ues). Another way to do this is to use the built-in length/2 predicate.

2

