
Logic Programming

Theory Lecture 8:

Clark Completion

Alex Simpson

School of Informatics

12th November 2012

Two issues with the CWA (Recap Lecture 7)

1. Because of the undecidability of definite clause predicate logic
(see Lecture 5), it is not possible to effectively compute the
theory CWA(T) from the theory T .

2. The CWA over-approximates the behaviour of negation by
failure. Consider the propositional theory T consisting of a
single axiom

p → p

Then the Prolog query \+ p goes into a loop. Nevertheless,

CWA(T) |= ¬p

Clark completion

The Clark completion is an alternative completion procedure, used
for modelling negation by failure.

In contrast to the CWA, the Clark completion is effectively
computable.

However, whereas CWA(T) can be defined for any logical theory
T , the Clark completion requires T to be in a particular form (see
next slide).

Roughly, the Clark completion makes the assumption that the
axioms of the definite clause program completely axiomatize all
possible reasons for atomic formulas to be true.

NAF logic program

A negation as failure (NAF) logic program is a collection of
formulas of the two shapes.

B

L1 ∧ · · · ∧ Lk → B

where B is an atomic formula and L1, . . . , Lk are literals (atomic
formulas or their negations).

A NAF goal is a list G1, . . . ,Gm of literals.

The Clark completion can be defined generally for NAF logic
programs and goals.

However, for simplicity, we make the same restrictions as in
Lecture 8: we allow negations only in queries, and we only allow
ground atomic formulas to be negated.

Example

Suppose we have a theory in which the only clauses with head
predicate british are

∀X. english(X) → british(X)

∀X. scottish(X) → british(X)

∀X. welsh(X) → british(X)

Then the Clark formula for the predicate british is

∀X. (british(X) ↔ (english(X) ∨ scottish(X) ∨ welsh(X)))

(The head predicate in a clause is: the predicate on the right-hand
side of the implication, if the clause is an implication; and the only
predicate in the formula, if the clause is an atomic formula.)

Example (continued)

Suppose the remaining axioms are

english(elizabeth)
scottish(mary)
scottish(james)

Then the Clark formulas for the three predicates english,
scottish, welsh are

∀X. (english(X) ↔ X = elizabeth)

∀X. (scottish(X) ↔ (X = mary ∨ X = james))

∀X. (¬welsh(X))

Example 2 (completed)

The Clark completion of the full theory:

∀X. english(X) → british(X) ,

∀X. scottish(X) → british(X) ,

∀X. welsh(X) → british(X) ,

english(elizabeth), scottish(mary), scottish(james)

is the theory:

∀X. (british(X) ↔ (english(X) ∨ scottish(X) ∨ welsh(X)))

∀X. (english(X) ↔ X = elizabeth)

∀X. (scottish(X) ↔ (X = mary ∨ X = james))

∀X. (¬welsh(X))

elizabeth 6= james james 6= mary mary 6= elizabeth

Note that the Clark completion is not itself a definite clause theory.

General completion procedure: Step 1

We now condsider the general procedure for constructing the Clark
completion Comp(T) of a definite clause theory T .

First we rewrite each individual definite clause in the theory. The
general form of a definite clause is

∀~X. (A1 ∧ · · · ∧ Ak → p(~t))

where ~X is a tuple of variables, and ~t is a tuple of n-terms, where n
is the arity (= number of arguments) of the predicate p.

We rewrite the clause to the equivalent formula

∀~Y. (∃~X. A1 ∧ · · · ∧ Ak ∧ ~Y = ~t) → p(~Y)

where ~Y is a tuple of n new variables.

Justifying this equivalence

The formula
∀~X. (A1 ∧ · · · ∧ Ak → p(~t))

is equivalent to

∀~Y, ~X. (A1 ∧ · · · ∧ Ak ∧ ~Y = ~t → p(~Y))

which is, in turn, equivalent to the desired formula

∀~Y. (∃~X. A1 ∧ · · · ∧ Ak ∧ ~Y = ~t) → p(~Y)

because of the general logical equivalence

(∀ X. (F → G)) ↔ ((∃ X. F)→ G) ,

which holds whenever the variable X does not appear in the
formula G .

Some special cases

∀~X. (A1 ∧ · · · ∧ Ak → p(~t))

For special cases of this formula, one can simplify the equivalent
formulas.

When k = 0 (i.e., the axiom is a Prolog fact rather than rule) the
equivalent formula is

∀~Y. (∃~X. ~Y = ~t) → p(~Y)

When the formula is ground, the equivalent formula simplifies to

∀~Y. A1 ∧ · · · ∧ Ak ∧ ~Y = ~t → p(~Y)

When ~t is the vector of variables ~X, there is no need to further
rewrite the original clause

∀~X. (A1 ∧ · · · ∧ Ak → p(~X))

General completion procedure: Step 2
We have now rewritten each clause with head predicate p to an
equivalent formula

∀~Y. E → p(~Y)

Suppose there are m such clauses for p, giving

∀~Y. E1 → p(~Y)

∀~Y. E2 → p(~Y)
...

∀~Y. Em → p(~Y)

Taken together, these formulas are equivalent to the single formula

∀~Y. (E1 ∨ E2 ∨ · · · ∨ Em) → p(~Y)

The Clark formula for the predicate p is then the formula

∀~Y. p(~Y) ↔ (E1 ∨ E2 ∨ · · · ∨ Em)

A special case

In the case that m = 0 (i.e., when there are no clauses with head
predicate p) the Clark formula is simply

∀~Y.¬p(~Y)

This can be understood as a genuine special case of the previous
definition, since the correct definition of an empty disjuction is the
truth value false.

General completion procedure: Step 3

The Clark completion, Comp(T) of the definite clause theory T is
the theory consisting of:

I Clark formulas for every predicate p appearing in the theory T .

I ¬(t1 = t2) for every pair t1, t2 of non-unifiable terms.

Clark completion of Lecture 7 example

As another illustrative example, here is the Clark completion of the
example from Lecture 7.

∀X. nasty(X) ↔ cheap(X)

∀X. cool(X) ↔ (free(X) ∨ X = mac)

∀X. cheap(X) ↔ X = windows

∀X. free(X) ↔ X = linux

linux 6= mac mac 6= windows windows 6= linux

Properties of Clark completion

1. The theory Comp(T) extends T .
That is, T |= F implies Comp(T) |= F , for all formulas F .

2. The theory Comp(T) is consistent.
Indeed, the minimal Herbrand model of T is a model of
Comp(T).

3. If Comp(T) |= A, where A is an atomic formula, then T |= A.
(That is, the Clark completion adds no new positive
information.)

4. If the prolog query \+ A succeeds, where A is a ground atomic
formula. Then Comp(T) |= ¬A.
(That is, negation by failure for ground queries is sound
relative to the Clark completion.)

Two issues with the CWA revisited

1. In contrast to the CWA, one can effectively compute
Comp(T) from T . Indeed, the description we have given for
this theory essentially gives an algorithm for constructing it.

2. The Clark completion more precisely captures the behaviour
of Prolog’s negation by failure. Consider again the
propositional theory T consisting of a single axiom

p → p

As before, the Prolog query \+ p goes into a loop. The Clark
completion of this theory is the theory

p ↔ p

Thus Comp+(T) 6|= ¬p, which more closely models Prolog’s
behaviour.

Clark completion — summary

I The Clark completion of T can be effectively computed from
T and soundly models negation by failure.

I It is more faithful to Prolog behaviour on negated queries
than the CWA.

I Although it has been described in this lecture for definite
clause theories only, the Clark completion can be more
generally defined for NAF Prolog programs and goals.

