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The Gaussian distribution in one dimension is defined as

p(x) =
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2πσ2
e−
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2σ2 (x−µ)2 , where
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p(x)dx = 1

1. We know that the mean is defined as
∫∞
−∞ xp(x)dx = µ and the variance is∫∞

−∞(x−µ)2p(x)dx = σ2. Show that the distribution of variable y = (x−µ)/σ
has zero mean and unit variance. Comment on the normalisation constant
and ensure you are familiar with the rules for change of variables for densities
(using the Jacobian).

2. Consider data xi, i = 1, . . . , P . Given mean µ, show that the Maximum
Likelihood estimator of σ2 is σ̂2 = 1

P

∑P
i=1(x

i − µ)2

3. A training set consists of one dimensional examples from two classes. The
training examples from class 1 are {0.5, 0.1, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.35, 0.25}
and from class 2 are {0.9, 0.8, 0.75, 1.0}. Fit a (one dimensional) Gaussian us-
ing Maximum Likelihood to each of these two classes. Also estimate the class
probabilities p1 and p2 using Maximum Likelihood. What is the probability
that the test point x = 0.6 belongs to class 1?

4. Load the data in the file week4.mat into matlab. The variable x1 gives
the attributes for each data point belonging to class 1. Each column is an
attribute and each row a data point. The variable x2 gives the data for class
2. Write some matlab code to train a class conditional Gaussian classifier on
x1 and x2. Use this to classify the data in xtest. Plot a class conditional
colour plot of xtest for the first two attributes and describe the decision
boundary.

5 (Harder) Given the distributions p(x|class1) = N(µ1, σ
2
1) and p(x|class2) =

N(µ2, σ
2
2), with corresponding prior occurrence of classes p1 and p2 (p1+p2 =

1), calculate the decision boundary explicitly as a function of µ1, µ2, σ
2
1, σ

2
2, p1, p2.

How many solutions are there to the decision boundary, and are they all rea-
sonable?
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