
Learning from Data 1
In tro duction to Matlab

David Barber and Chris Williams
dbarber@anc.ed.ac.uk

coursepage: http://anc.ed.ac.uk/ » dbarber/lfd1/lfd1.html

For web basedhelp follow the links in
http://www.ai.mit.edu/courses/6.867-f01/matlab.html .
Seealsohttp://www.math.unh.edu/ » mathadm/tutorial/software/matlab/

Background

This document has the objective of intro ducing you to someof the facilities
available in Ma tlab , including:

1. Using the interpreter and help system.

2. Plotting facilities.

3. Scripts and functions.

4. Matrices.

Section 5 gives information on the Netlab toolbox for neural networks.

Ma tlab is an interpreted language(and as such can be much slower than
compiled software) for numeric computation and visualisation. It o®ers
high level facilities for dealing directly with mathematical constructs. The
particular bene¯ts that it o®ersfor this courseare:

1. Excellent support for linear algebra and matrix operations. The ba-
sic type in Ma tlab is a double precision matrix. The software was
originally developed as a linear algebra package(Ma tlab stands for
MATrix LABoratory) and has e±cient and numerically reliable algo-
rithms for matrix inversion, eigenvaluesetc.

2. Visualisation facilities. The in-built graphing and plotting functions
are easyto usefor both 2d and 3d plots.

3. Easeof extension. Functions and scripts canbewritten in the Ma tlab
language(in `M-¯les') and thesecan then be called in exactly the same
way as the core functionalit y of Ma tlab . In fact, the `toolboxes'
that extend the functionalit y of Ma tlab to more specialist areas
are written in this way. Netlab (a Ma tlab toolbox for neural
networks) consistsof a set of M-¯les.

4. Portabilit y. Software written in the Ma tlab languageis portable to
any platform that runs Ma tlab , including Unix machines, PCs and
Macintoshes.

1

Learning from Data 1 : Matlab 2

1 Using the Matlab in terpreter and help system

The basic objects that Ma tlab works with are matrices: 2-d rectangular
arrays of doubleprecision(or complex) numbers. Operationsand commands
in Ma tlab are intendedto work with matrices just asthey would bewritten
down on paper. The Ma tlab interpreter can be controlled dynamically
from the command line.

1. To enter a matrix, you should follow theseconventions:

² Separateentries with white spaceor commas.

² Use a semi-colon; to denote the end of each row.

² Surround the entries with squarebrackets [and] .

The statement

A = [8 1 6; 3 5 7; 4 9 2]

results in the output

A =

8 1 6
3 5 7
4 9 2

Ma tlab will output the result of every command. To suppressthis,
you should terminate your commandwith a semi-colon; . Thus, typing

A = [8 1 6; 3 5 7; 4 9 2];

still setsA to be the samematrix, but there is no output.

The value of any variable, such as the matrix A, is retained until it
is explicitly modi¯ed. If there is no variable on the left hand side of
an expression,then Ma tlab assignsthe result to a built-in variable
named ans.

To ¯nd out the value of the i , j th element of A, type A(i, j) . For
example,on typing

b = A(1, 2)

the following is output

b =

1

Note that matrix indices start from 1. To obtain the secondrow of
the matrix, type

c = A(2, :)

which givesthe following output:

c =

3 5 7

To obtain the third column, type

d = A(:, 3)

which givesthe following output:

Learning from Data 1 : Matlab 3

d =

6
7
2

2. In somesituations, Ma tlab givesa special meaningto vectors, which
are matrices with only one row or column. A particularly useful way
of forming row vectors is using the colon operator : . The line

x = 0:0.1:1;

generatesa row vector x of length 11 containing the values from 0 to
1 with increments of 0:1. This construction is often used to generate
the x-axis points in graphs. So the command

y = sin(2 * pi * x);

generatesregularly spacedvaluesfrom a sine curve.

3. The Ma tlab interpreter allows you to edit your command line. This
makes it much easier to correct small typing mistakes or to repeat
sequencesof nearly identical commandswithout error. You can use
emacs-style command line editing, e.g. Ctl-p gives you the previous
command, and this can be repeatedly used to go back in the com-
mand history. You can then edit a command line using the usual
delete/backspace key, and move around in the command line using
Ctl-b (movesbackwards) and Ctl-f (forwards).

Alternativ ely, the up and down arrow keys (usually on the right of
your keyboard) can be used to move forwards or backwards through
the command history, while left and right arrow keys position the
cursor on the command line. Typing carriage return anywhere on the
line will then submit the command to the interpreter.

For example, to modify the variable x, type up arrow twice. This will
give you the sameline as you typed two commandsago, namely:

x = 0:0.1:1;

By moving the cursor, deleting the charactersbetweenthe two colons,
and typing 0.05 , modify this to read

x = 0:0.05:1;

and type carriage return to submit the command. Now the vector x
has length 21 and contains the values from 0 to 1 with increments of
0:05. However, y still has length 11, and its values no longer corre-
spond correctly with thosein x. (Unlik e with a spreadsheet,we cannot
link variables in Ma tlab so that they are automatically updated.)
To rectify this, the simplest solution is to repeat the de¯nition of y by
typing up arrow twice and submitting the command.

4. To save data, you can use the command save. For example, to save
the variable A in ASCII format into a ¯le A.dat , type:

save A.dat A -ascii

Type ls to get a listing of the ¯les in your current directory, which
should include A.dat . (Note that normally one can simply use save
A.dat A which storesthe data in an e±cient format. The data can be
reloadedusing load A.dat)

Learning from Data 1 : Matlab 4

5. Of course,most of the time the datasets we will be analysing are far
too large to type at the command line without error. Instead, we
can read in the matrices from external ¯les. These ¯les can be in a
Ma tlab format, or stored as text, with each row of the matrix on a
new line. To read in somedata which is stored in Ma tlab format,
type (assumingthat you have a Ma tlab ¯le data.mat in your current
working directory)

load data

You can ¯nd out what variables you currently have by typing:

whos

6. Ma tlab is a very powerful tool with hundreds of built-in functions.
Even the most hardenedMa tlab veteran may occasionallyforget the
name of a function or the order of its arguments. Fortunately, there
is an on-line help facilit y that provides information on most topics.
To get help on a speci¯c function, you need only type help followed
by the function name. So, to ¯nd out about the function mean, you
should type:

help mean

A more general information search is provided by lookfor (which is
similar to the Unix apropos command). This enablesyou to ¯nd out
what functions Ma tlab providesfor certain operations. For example,
to ¯nd out what functions there are related to calculating covariances,
type:

lookfor covariance

2 Simple use of two dimensional plotting facilities

1. A dataset for a toy regressionproblem (the noisy sin) can very easily
be plotted using the vector x we created earlier. The simplest form of
the plot function takes the x vector as its ¯rst argument, and the y
vector as its secondargument. Di®erent line styles (or scatter plots)
can be de¯ned with a third argument. (For more detail, just type
help plot .) To seethe data, type

plot(x, sin(2*pi*x) + 0.1*randn(size(x)), '+')

which will give you a scatter plot of the data with yellow plussesfor
each point. The function randn generatessamplesfrom a standard
normal distribution (i.e. a Gaussian with zero mean and unit vari-
ance).

Notice that the function sin can take a vector (or indeed a matrix)
as input, and return the sine of each element.

Say we also wanted to plot another curve on the same axes, e.g.
cos2¼x. We need two new ideas: (i) the use of hold on, which per-
mits multiple plots to be made on the sameaxesand (ii) the choice
of di®erent colours for di®erent plots. This can be achieved by a third
argument to the plot function (for more detail, just typehelp plot).

plot(x, sin(2*pi*x))
hold on
plot(x, cos(2*pi*x), 'g')

Learning from Data 1 : Matlab 5

hold off

The 'g' option plots the cosinecurve in green. hold off cancelsthe
hold on command.

It is possible to add extra information to the plot using the title ,
xlabel , ylabel , and text commands, and to control the scaling of
the axesusing the axis command. Note that these commandsmust
follow the plot to which they refer. Axes with non-linear scaling can
be obtained with the loglog , semilogx and semilogy commands.

A plot can easily be saved in a variety of formats. For example, to
save a plot as an encapsulatedpostscript ¯le called myplot.eps , type

print -deps myplot.eps

2. We can also easily make histogram plots. First, create somedata by
typing

z = randn(500,1)

This will create a vector of 500 (pseudo)randomsamplesfrom a zero-
mean unit-variance Gaussian distribution. We will now plot a his-
togram of this data, specifying 15 bins by typing

hist(z, 15)

Does it look how you expect it should?

3 Elemen tary use of scripts and functions.

In someexercisesyou will needto edit existing scripts and functions, either
to test the e®ectof varying parameters,or to make it easierto run a sequence
of instructions multiple times (in caseof typing errors). This exerciseis
designedto give you somepractice at this.

Scripts automate a ¯xed sequenceof instructions. Functions are more °ex-
ible, in that they can take arguments and return values, which allows the
user to abstract away from particular variable names. Both functions and
scripts are text ¯les (called M-¯les) which have the name foo.m, where foo
is the script or function name. Functions and scripts are invoked in Ma tlab
by typing namewith the relevant arguments enclosedin round brackets.

1. Copy the ¯le http://anc.ed.ac.uk/~dbarber/lfd1/whiten.m to an
appropriate directory.

2. Start up a text editor.

3. Open the ¯le whiten.m . The purposeof this function is to pre-process
data by applying a linear transformation so that all the variables are
zero meanand unit variance. This ¯le assumesthat the data is in the
form where each column of the matrix represents a datapoint. This is
the most natural mathematical way to represent a set of datapoints.
(Unfortunately , the usual Ma tlab convention is that each column
represents a variable and each row represents an observation! We are
therefore going against Ma tlab convention, but I think towards a
more consistent convention for our course). The ¯rst line of the ¯le

function [y,mu,s] = whiten(x)

Learning from Data 1 : Matlab 6

de¯nes the function interface. The argument x is the input data ma-
trix, while the return value y is the processeddata (and therefore has
the samedimensionsas x). The variables x, y and all other variables
in this function are local to this function and are quite distinct from
the variables we have already de¯ned in this session.

4. Note that the %symbol indicates that the rest of the line is a comment
and will be ignored by the Ma tlab interpreter. The line

n = size(x, 2);

¯nds the number of columns in the data matrix. After this, the lines

mu = mean(x')';
s = std(x')';

calculate the meanand standard deviation of each column of the data
(the transposesare due to Ma tlab 's convention of a datapoint being
a row). The next step is to subtract the mean of each column. While
it would be possibleto do this using Ma tlab 's for loops, it would be
very slow. It is much more e±cient to use matrix operations. What
is required is to subtract a matrix where every entry in the i th row is
the mean of that row. This is done by the lines:

e = ones(1,n);
y = x - mu*e;

Now y is a data matrix where each variable has zero mean. We just
needto divide each column by the standard deviation. To do this, we
usethe element-wise division operator ./ (the usual division operator
a/b essentially multiplies a by the matrix inverseof b).

y = y ./ (s*e);

5. You are now ready to run the function. Switch back to the Ma tlab
command window. First, we can generatesomerandom data:

foo = rand(2,10);

The function rand generatessamplesfrom a random variable which is

uniformly distributed on the interval [0; 1]. This dataset has 2 rows
and 10 columns and represents a set of 10 datapoints, each of which
is two-dimensional. Type

m = mean(foo')'
s = std(foo')'

to ¯nd out the meanand standard deviation of each variable. Now we
can normalise the data with our function. Type

bar = whiten(foo);

and ¯nd out the new mean and standard deviation. To within round-
ing error, they should be zero and one respectively.

4 Matrices

4.1 Matrix addition and multiplication

Enter a matrix by typing

A = [8 1 6; 3 5 7; 4 9 2]

This results in the output

Learning from Data 1 : Matlab 7

A =

8 1 6
3 5 7
4 9 2

We can alsoenter matrices Band Cby typing B = [1 4 7; 2 5 8; 3 6 0]
and
C = [1 2 3; 4 5 6] . Does the statement D = A + B do what you would
expect? How about E = A + C?

To transposea matrix in Ma tlab we use the ' operator (a single back-
quote). For example, try F = A' .

Supposewe de¯ne a column vector by g = [-1 0 2]' . Then we multiply
this vector by a matrix by typing h = A*g. Supposewe createa row vector,
e.g. u = g' . What happens if we then try v = A*u ? Why ?

Ma tlab will, of course,alsomultiply matrices of the appropriate size. For
example
A2 = A*B is valid, as is A3 = C*A. What about A4 = A*C?

4.2 Solving systems of linear equations

Supposewe want to solve the system of linear equations represented by

Ax = g:

Ma tlab providesa specialdivision operator for this purpose;wecansimply
write

x = A \ g

and the solution,

x =
-0.0194
0.2722

-0.1861

is printed out. You can check that x is the solution to the system of linear
equationsby calculating A*x.

4.3 Manipulating the elemen ts of a matrix

It is possible to cut parts out of matrices and perform quite complex op-
erations cutting-and-pasting matrix entries in Ma tlab . We will consider
somesimple examples.What is the e®ectof

A
A(2:3,1:2)

Note the syntax above: 2:3 speci¯es the rows wanted, and 1:2 speci¯es
the desired columns. Rows and columns can be manipulated as complete
entities. Hence A(1,:) gives the ¯rst row of A, and A(:,2) gives the
secondcolumn.

4.4 Special matrices

Somespecialmatrices that Ma tlab knowsabout areones(m,n), zeros(m,n),
rand(m,n), randn(m,n) and eye(n) . ones(m,n) generatesa matrix of
sizem£ n with all the elements equalto 1. Try typing ones(4,2) . zeros(m,n)

Learning from Data 1 : Matlab 8

acts similarly but ¯lls all of the elements with 0. This can be useful for ini-
tializing a matrix beforecomputations. Try zeros(3,3) .

rand(m,n), randn(m,n) generate random matrices of size m £ n. rand
choses(pseudo)randomnumbers in the interval (0:0; 1:0), while randn gen-
erates them according to a Normal distribution with zero mean and unit
variance. Try randn(5,3) .

eye(n) generatesa n £ n identit y matrix. Type eye(5) to check this.

4.5 Elemen t-b y-elemen t operations

Sometimeswe don't want to do matrix operations, but elementwise opera-
tions instead. Theseare achieved by using a dot . to precedethe operator.
For example, say we have the vectors

y = [1 2 3]; z = [4 5 6];

What is the e®ectof

y .* z
y ./ z
y .^2

These\dot" operations can also be performed on matrices; try B./A

4.6 Output formatting

The nameand valueof a variable canbeoutput just by leaving the semicolon
o® the end of the line. However, it is possibleto produce tidier output by
using the function disp . For example

disp('the values in matrix A are');
disp(A);

It is also possible to use C-like syntax with the command fprintf . The
format command speci¯es the output format. For example type

pi
format long
pi

5 Netlab neural net work soft ware

The Netlab neural network software is a toolbox for Matlab, written by Ian
Nabney and Christopher Bishop.

It consistsof a library of Matlab functions and scripts basedon the approach
and techniques described in Neural Networks for Pattern Recognition by
Christopher M. Bishop, (Oxford University Press,1995). The Netlab home-
pagecan be found at

http://www.ncrg.aston.ac.uk/netlab/index.html

The software (should have been!) installed on the School machines, so that
upon typing the command matlab from the command line the netlab func-
tions are ready for your use. If an error occurs, probably the routines have
not been installed. Hoever, you can do this simply by downloading the
routines from the Netlab homepageand placing them in your working di-
rectory (or in any of your directoriesand adjusting the Ma tlab path sothat
Ma tlab can ¯nd the routines). The command help netlab issuedwithin
MATLAB will give a listing of the various functions and demosavailable,
and the command demnlab will bring up a GUI interface to the demos.

