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LFD1

1. Consider a set of N -dimensional data xµ, µ = 1, . . . , P . Each datapoint xµ has a
corresponding class label, cµ.

(a) Explain how the K nearest neighbour method (KNN) can be used to classify an
unlabelled test data point x∗.
For the single nearest neighbour method (K = 1) describe, with the aid of a
diagram, the geometry of the decision boundary. [30%]

Discuss a situation in which the nearest neighbour (K = 1) method will perform
poorly. [15%]

(b) Describe how to reduce the above training data to M -dimensional data using
Principal Components Analysis (PCA). Include a full description of the PCA
method. [20%]

(c) Describe how to combine PCA dimension reduction and the nearest neighbour
classification method, and explain why you think this may be an appropriate
thing to do. [10%]

(d) You decide to perform PCA dimension reduction on images, each of which is
5000× 5000 pixels. You have 10000 such images. What is the dimension of the
covariance matrix of the data? [10%]

(e) Consider two vectors xa and xb and their corresponding PCA approximations
m +

∑M
i=1 aie

i and m +
∑M

i=1 bie
i, where the eigenvectors ei, i = 1, . . . M are

mutually orthogonal and have unit length and m is the mean of the data. The
eigenvector ei has corresponding eigenvalue λi.

Let S be the covariance matrix of the data. The Mahalanobis distance between
xa and xb is defined as

(
xa − xb

)T
S−1

(
xa − xb

)
.

Explain how to approximate this distance using the M -dimensional PCA ap-
proximations, as described above. [15%]

Question 2 is on the next page.
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2. Consider data {(xi, ci) , i = 1, . . . , n1 + n2}. This data consists of inputs xi, each with
a corresponding class label, ci = 1 or ci = 2. There are n1 training examples from
class 1, and n2 training examples from class 2.

(a) Describe the general procedure of fitting class conditional distributions
p(x|c = j, θj) to the data, where θj are the parameters of the distribution fitted
to the data from class j. How can we use these distributions to form a classifier
p(c = j|x)? [30%]

(b) For training data with multi-dimensional inputs, dim(x) = m, define the Naive
Bayes classification method, and discuss the strengths and weaknesses of this
approach. Discuss how to train the classifier in the case of discrete inputs, and
contrast this with the case of continuous inputs. [25%]

For the case of m dimensional binary input data, discuss the relationship between
the decision boundary of the Naive Bayes method and the decision boundary
from logistic regression. [20%]

(c) For one dimensional input data, show that the value of x that represents the
decision boundary of the classifier satisfies the expression

log
p(x|c = 2)

p(x|c = 1)
= log

p(c = 1)

p(c = 2)
.

Write down the Maximum Likelihood (ML) estimates
of p(c = 1) and p(c = 2). [10%]

In one dimension, dim(x) = 1, the Gaussian distribution is defined as

p(x) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

You decide to fit a Gaussian to each class and use the ML estimates of the
means µ̂1 and µ̂2. From the data, you find that the ML estimates of σ2

1 and σ2
2

are equal, that is, σ̂2
1 = σ̂2

2. Write down the explicit x value that defines the
decision boundary. [10%]

Point out any potential numerical difficulties in directly comparing the values
p(c = 1|x) and p(c = 2|x) and explain how you might overcome this. [5%]

Question 3 is on the next page.
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3. Consider iid (independently and identically distributed) training data
D = {(xµ, cµ), µ = 1, . . . , P}, cµ ∈ {0, 1}.

(a) Explain the following terms : training error, test error, validation error. Explain
the concept of overfitting, and how this can be avoided. [15%]

(b) Explain what is meant by the term “dimension reduction” of input data x.
Explain what is meant by linear dimension reduction, and explain how non-
linear dimension reduction can be performed. [15%]

Give an example of a 2 dimensional dataset for which linear dimension reduction
is inappropriate. [10%]

When using PCA for dimension reduction, how can we gain some insight into the
appropriate number of dimensions, based on the eigenvalues of the covariance
matrix? [10%]

Briefly describe a general approach to finding the optimal number of dimensions
for any dimension reduction method. [10%]

(c) Define the gradient ascent learning algorithm. With the aid of a diagram, draw
an example where a gradient ascent optimisation routine would fail to find the
global optimum. [15%]

(d) Define logistic regression, and comment on the decision boundary. With the
aid of a diagram, draw an example dataset that cannot be correctly classified
using logistic regression. Would it be appropriate to use PCA to first reduce the
dimension of the data, before using logistic regression? [25%]
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LFD1

Brief notes on answers:

1. (a) For the nearest neighbour method K = 1, we search through the dataset to find
the training datapoint xn that is closest (using the Euclidean distance) to x∗.
We assign the label of x∗ to be cn. For K > 1, we find the K nearest neighbours
of x∗, and get their associated class labels. The majority class of these neigh-
bours is taken as the class of x∗.

Picture with a few data points. The decision boundary is a Voronoi tesselation.

If there is an irrelevant input, this will make things difficult. This could be
depicted in two dimensions as a stretched case in which the irrelevant dimension
dominates the distances between points. Alternatively, class distributions which
are highly non-isotropic can give difficulty. This could be drawn as two very thin
pancakes which are separated along the vertical axis by a small amount. Any
similar or sensible answers are acceptable.

(b) Find the sample mean and covariance matrix of the data. Then calculate the M
largest eigenvalues of the covariance matrix, and their corresponding eigenvec-
tors, ei, i = 1, . . . , 20. The sample mean m is given by

m =
1

P

∑
µ

xµ

The covariance matrix is defined as

S =
1

P

∑
µ

xµ(xµ)T −mmT

If they define the biased or unbiased version of the covariance, either is fine.

The lower dimensional data is then given by the projection, yµ
i = (xµ −m)T ei, i =

1, . . . 20, µ = 1, . . . , P .

(c) We can use PCA to first reduce the dimension of all the inputs, regardless of the
class label. This then defines a linear projection, which we will use to reduce the
dimension of any test point x∗. We can then use KNN on the reduced vectors,
comparing their distances, rather than using the full dimensional vectors. This
may be appropriate in retaining only those directions in space in which large vari-
ability occurs, and can result in a more robust classifier. In addition, once PCA
has been performed, the distance comparisons in the lower dimensional space
will be much faster than in the high dimensional space. Storage requirements
are also reduced.

(d) Covariance matrix is 25000000× 25000000 dimensional.

(e) Using the approximations, we have

(xa − xb)TS−1(xa − xb) ≈ (
∑

i

aie
i −∑

i

bie
i)TS−1(

∑

j

aje
j −∑

i

bje
j)

Due to the orthonormality of the eigenvectors, this is
∑

i a
2
i /λi−2aibi/λi+b2

i /λi =
(a− b)TD−1(a− b) where D is a diagonal matrix containing the eigenvalues.
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2. (a) We can use the likelihood to fit each distribution. Assuming iid data, this is
given by ∏

x∈class(j)

p(x|c = j, θj)

Taking the log is numerically convenient. We can then find the parameters θj by
numerically maximimising this function. Once trained, we can form a classifier
using Bayes’ rule:

p(c = j|x) =
p(x|c = j)p(c = j)

p(x|c = 1)p(c = 1) + p(x|c = 2)p(c = 2)

The ML estimates of the prior class probabilities are p(c = 1) = n1/(n1 + n2)
and p(c = 1) = n2/(n1 + n2).

(b) In Naive Bayes, the inputs are assumed to be independent given the class:

p(x|c = 1) =
m∏

j=1

p(xj|c = 1).

For discrete data, the parameters p(xj|c = 1) are estimated from the data by
simply counting the fraction of times that xj is in a particular state, given that
c = 1. Similarly, the prior p(c = 1) is given by the relative number of occurrences
of class 1 compared to class 2 in the training data. Training is therefore very fast.

For continuous inputs, we can write down the log likelihood as a sum of log
likelihoods for each input (due to the conditional independence assumption).
In general, we would need to maximise each term then numerically. For the
Gaussian, however, we can fit simply the mean and variance of each term by
calculating the mean and variance of each input for a given class.

Classification is then given by comparing

log
p(c = 1|x)

p(c = 2|x)
> 0

Or ∑

j

log
p(xj|c = 1)

p(xj|c = 2)
+ log

p(c = 1)

p(c = 2)
> 0

A serious weakness of Naive Bayes is the very strong conditional independence
assumption.

For binary data, the above rule shows that the decision boundary will be lin-
ear. This is the same as for logistic regression, although the boundaries are not
necessarily the same.

(c) The decision boundary is given when p(c = 1|x) = 1/2. Using this gives

1

2
=

p(x|1)p(c = 1)

p(x|1)p(c = 1) + p(x|2)p(c = 2)

Rearranging this expression and taking the logarithm gives the desired result.
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Using the Gaussians in the expression for the decision boundary, we have

− 1

2σ2
1

(
µ2

1 − µ2
2 + 2x (µ1 − µ2)

)
= log

p(c = 1)

p(c = 2)

Rearranging this gives

x =
σ2

1

µ2 − µ1

(
log

p(c = 1)

p(c = 2)
+

1

2

(
µ2

1 − µ2
2

))

p(c = 1) = n1/(n1 + n2), p(c = 2) = n2/(n1 + n2)

It is numerically difficult to calculate directly p(c = 1|x) since this involves
exponentiating a quantity. We will run into over/underflow problems if the
variance is small. (This problem is compounded in higher dimensions). Taking
the logarithm makes for a numerically feasible approach since to find the decision
boundary we can simply compare the log probabilities.

3. (a) Training error : the error that is made by a model on the training data. Test error
: the error made on a set of data distinct from the training data. This gives an
independent estimate of the prediction error of the model. Validation error : in
setting parameters such as regularisation parameters, we need to use another set
of data to test how well each model, with a particular regularisation parameter
performs in terms of prediction. Overfitting is the problem of training a too
complex model such that it fits the data to have very low training error. However,
the model will not necessarily perform well on the test set. This situation can
be avoided by using a regulariser, and setting this to an appropriate value using
a validation set.

(b) Dimension reduction replaces each x in the data with a lower dimensional vec-
tor y. This mapping is often chosen according to some loss criterion such as
to minimise the reconstruction error. Alternatively, class specific dimension re-
duction, such as Fisher’s Linear Discriminant reduce the dimension such that
the differences between two data classes are maximised. Linear dimension re-
duction is performed by y = Wx for some non-square matrix W . Autoencoders
with more than one hidden layer can be used for non-linear dimension reduction.

Any picture with a dataset that does not lie on a straight line is fine. Eg. data
on a circle, or on a wiggly line.

In PCA, the eigenvalue spectrum tells us how many dimensions are appropriate,
since the squared reconstruction error is the sum of the square eigenvalues from
the eigenvectors not included in the reduction.

We can use a validation set in general to find the optimal number of dimensions.
That is, split the training data into a training and a validation set. The perfor-
mance of a model based on a certain reduced dimensionality is evaluated on the
validation set. That dimension which produces the best results on the validation
set is considered optimal.
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(c) Let L(w) be a function that we wish to maximise. Gradient ascent performs the
update

wnew = w + η∇wL

where η is the learning rate.

Any picture with more than one maximum, in which we initialise the routine
close to the local optimum is fine as an example where gradient ascent will fail.

(d) Logistic regession is such that

p(c = 1|x) = σ
(
θ + wTx

)

The decision boundary is linear. We cannot separate, for example, the XOR
problem. Any diagram with non-linearly separable data would be fine.

Arguably, there is little point in first using a linear dimension reduction technique
such as PCA, since logistic regression is a function of a linear combination of
the inputs. Also, there is more chance that high dimensional data is linearly
separable.
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