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1 What kinds of Data, and how to represent it?

There are generally three types of data entries that we can encounter; these
are categorical, ordinal and numerical types. Since we will ultimately wish
to perform computations with the data, we need to transform any entries
in the database which are non-numerical into numerical values. Some care
needs to be taken at this point, since biases can be inadvertently introduced
at this stage, as described below.

1.1 Categorical

For categorical (or nominal) data, the observed value belongs to one of a
number of classes, and there is no intrinsic ordering of the classes. An
example of a categorical variable would be the description of the type of job
that someone does, e.g. healthcare, education, financial services, transport,
homeworker, unemployed, engineering etc. One way to transform this data
into numerical values would be to use 1-of-m encoding. Here’s an example:1-of-m encoding
There are 4 kinds of jobs: soldier,sailor,tinker,spy. A person who is a soldier
is represented as (1,0,0,0), a sailer as (0,1,0,0), a tinker as (0,0,1,0) and a
spy as (0,0,0,1). So, here’s how to transform the following records :

age 32 63
profession sailor spy

→

age 32 63
profession1 0 0
profession2 0 0
profession3 1 0
profession4 0 1

This kind of coding is sensible since the distance between two vectors repre-
senting two different professions (see mathematics notes) is constant (equal
to 1).

Any database is described by a list of attributes. In the above example onAttributes and values
the left, there are two attributes, ‘age’ and ‘profession’. Each record in the
database corresponds to a setting of the list of attributes to a particular
value. (Sometimes data entries might be missing, so that we would talk
of ‘missing data’ or ‘missing values’). In the above example on the right,
there are five attributes, ‘age’, ‘profession1’,‘profession2’,‘profession3’ and
‘profession4’.

It is clear that 1-of-m encoding induces dependencies in the profession at-Warning!
tributes. Clearly, if one of the profession attributes is 1, the others must be
zero. Be very careful (especially with Naive Bayes) that you do not fall into
the trap of assuming that these attributes are independent.

1.2 Ordinal

An ordinal variable again consists of categories, but there there is an order-
ing or ranking of the categories, e.g. cold, cool, warm, hot or 3, 2(ii), 2(i), 1
(for university degrees).

In this case, we may wish to encode the fact that there is an explicit ordering
in these data. Thus, we could perhaps use -1 for cold, 0 for cool and +1
for warm and +2 for hot. Clearly, this choice is somewhat arbitrary, and
one should keep in mind that any results will be dependent on the choice of
coding.

1.3 Numerical

Numerical data takes on values that are real numbers, e.g. a temperature
measured by a thermometer, or the salary that someone earns.
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2 What’s this course all about?

The course is about fitting models to data , and using them to answer ques-
tions about the data. Technically, these are called learning and inference.
It’s interesting to look at the dictionary definition of these words :

To learn:

• To gain knowledge, comprehension, or mastery of through experience
or study.

• To fix in the mind or memory; memorize: learned the speech in a few
hours.

• To acquire experience of or an ability or a skill in: learn tolerance;
learned how to whistle.

• To become aware: learned that it was best not to argue.
To infer:

• To conclude from evidence or premises
• To reason from circumstance
• surmise: We can infer that his motive in publishing the diary was less
than honorable

• To lead to as a consequence or conclusion: Socrates argued that a
statue inferred the existence of a sculptor.

• To hint; imply.
It’s clear that “learning” is always contextual – what do you learn; in what
area have you gained a skill? We will attempt to make ‘machines’ that
can be skilled in particular areas in which we provide data and possibly
additional hints.

2.1 Learning

Learning is the process of fitting a model to data. For example, in a su-Statistics in disguise?
pervised learning scenario, we might be interested in learning a mapping
from inputs to outputs. One way to do this is to postulate the existence
of some kind of underlying data generating mechanism for which we do not
know the exact parameter settings. In many ways, this is related to statis-
tics. Whatever you decide to call it, ultimately, fitting models to data is
the domain of statistics. What changes is the domain expertise that can
be brought to bear. For example, a physicist may be rather indignant toMathematics is the language

of science. Probability is the
logic of science.

be called a statistician just because s/he fits a postulated physical model
to data from sub-nuclear experiments. Similarly, a researcher in Natural
Language Processing may be rather annoyed to hear that “s/he’s just a
statistician”. Indeed, science is (largely) about fitting models to data – it’s
just that domain knowledge can be very deep and specific. (The difficult
and interesting thing about science is suggesting – from amongst the infinite
sea of possibilities – a useful restricted class of models in the first place.)
In this course, our domain of interest is applications in some rather non-
specific areas. Is it possible to come up with methods and models that work
in the absence of specific domain knowledge? Well, not really. We shall
provide various general hints that always bias our solutions in a certain way
that usually intuitively corresponds to the way we think (hope!) the world
works.

2.2 Inference

A doctor spends a lifetime learning both from textbooks but from patients.
A new patient comes into the surgery exhibiting a list of symptoms. The
doctor (based on her own internal model of how symptoms and diseases are
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related) infers that the patient has glandular fever.

Inference is using the learned model to answer specific questions. For exam-
ple, we may have fitted a classification model from a database. We might
be then interested in using the model to infer the class of a novel input. For
example, will this person default on their loan if they are married, ask for a
loan of 100000 pounds, and are a teacher?

3 What kind of Learning?

Machine learning is traditionally (and not always helpfully!) split into two
main areas: supervised, and unsupervised learning. The difference between
the two depends on what kind of question you wish the data to try to answer
(and possibly on the data available). (Reinforcement learning –covered in
LFD2 – is a kind of supervised learning in which the supervisor provides
rewards for actions which improve a situation and penalties for deleterious
actions).

3.1 Unsupervised Learning

A baby processes a mass of initially confusing sensory data. After a while the
baby begins to understand her environment in the sense that novel sensory
data from the same environment is familiar or expected. When a strange
face presents itself, the baby recognises that this is not familiar and may be
upset. The baby has learned a representation of the familiar and can distin-
guish the expected from the unexpected; this is an example of unsupervised
learning.

In a mathematical sense, here we just wish to fit a model which describesDescriptive modelling
succinctly and accurately the data in the database. That is, there is no
supervisor telling us what is right or wrong – we simply observe some data
and try to describe it in an efficient way with our model. For example, here
are some points:

x1 -2 -6 -1 11 -1 46 33 42 32 45
x2 7 22 1 1 -8 52 40 33 54 39

This is an example of unlabelled data. In a sense, there are no outputs, only
inputs. We can visualise this data by plotting it in 2 dimensions:
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By simply eye-balling the data, we can see that there are two apparent
clusters here, one centred around (0,0) and the other around (35,35). A
reasonable model to describe this data might therefore be to describe it as
two clusters, centred at (0,0) and (35,35), each with a variance (spread) of
around 1.

3.2 Supervised Learning

I’m fond of the following story :

“ A father decides to teach his young son what a sports car is. Finding
it difficult to explain in words, he decides to try to explain by examples.
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They stand on a motorway bridge and, as each car passes underneath, the
father cries out ‘that’s a sports car!’ when a sports car passes by. After ten
minutes, the father asks his son if he’s got it. The son says, ‘sure, it’s easy’.
An old red VW Beetle passes by, and the son shouts – ‘that’s a sports car!’.
Dejected, the father asks – ‘why do you say that?’. ‘Because all sports cars
are red!’, replies the son. ”

This story is an example of supervised learning. Here the father is the su-
pervisor, and his son is the ‘learner’, or ‘machine learner’ or ‘predictor’. The
nice point about this story is that you can’t expect miracles – unless you ex-
plicitly give extra information, learning from examples may not always give
you what you might hope for. On the other hand, if they had been there
the whole week, probably the son would have learned a reasonably good
model of a sports car, and helpful hints by the father would be less impor-
tant. It’s also indicative of the kinds of problems typically encountered in
machine learning in that it is not really clear anyway what a sports car is –
if we knew that, then we wouldn’t need to go through the process of learning!

We typically have a training set of labelled data, for example, here are somePredictive modelling
data

nationality British Dutch Taiwanese British
height(cm) 175 195 155 165

sex m m f f

We might have a large database of such entries. A supervised learning
problem might be: given a new, previously unseen (nationality,height) pair,
predict the sex of the person. For example, given that a person is Taiwanese
and 167cm tall, are they going to be male or female? In this case we see
the training data as a collection of (input,output) pairs, where the output
or label has been given by a ‘supervisor’. Ultimately, we wish to form a
mapping from the inputs to the output (possibly more than one output)
that accurately describes the label/output given the inputs. Ideally, we
would like our model to generalise well (predict accurately) novel test data
not seen previously during the model building process.

Note that this is a good example to motivate our later ideas about proba-Uncertainty
bility/uncertainty – there is clearly not going to be absolute certainty about
our predictions in this case since there are always going to be tall females
and shorter males that will make classifying a novel person an inexact sci-
ence. However, we may be able to infer what is the probability that a novel
person is male, given our trained model. In practice, uncertainty often plays
a major role in machine learning, and we need to use a framework that can
handle this. Uncertainty is not just an issue in supervised learning. Also we
may be uncertain as to the exact values in an unsupervised set of data, and
we may wish to take this into account in building a model. In my humble
opinion, any method that does not take uncertainty into account (such as
decision trees) are not really worth their salt. However, many traditional
methods from machine learning and computer science are non-probabilistic
and some are included in this course since their use is (unfortunately!) rather
widespread.

Supervised learning problems traditionally come in two flavours, classifica-
tion and regression.

Given a set of inputs, predict the class (one of a finite number of discreteClassification
labels). Normally, the class is ordinal (there is no intrinsic information in
the class label). For example, given an image of a handwritten digit, predict
whether it is 0,1,2,3,4,5,6,7,8 or 9. This would be a 10-class classification
problem. Many problems involve binary classes (you can always convert
a multi-class problem into a set of binary class problems – though this is
not always natural or desirable). For binary classes, there is usually no
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information as to whether we say the data are labelled as class 0 or 1,
or alternatively as class 1 or 2. For example, the sports-car classification
problem would have been the same if the father said ‘1’ or ‘0’ when the car
passing by was a sports car or not. A great deal of problems in the machine
learning arena are classification problems. Uncertainty will ultimately play
a key role in any real world application. Can we really say that Mr Smith
will definitely default on his loan? This may seem a very strong statement
if there is little obvious difference between the attributes of Mr Smith and
Mr Brown.

Given a set of inputs, predict the output value (one of a potentially infiniteRegression
set of real-valued points). For example, given historical stock market data,
predict the course of the FTSE for tomorrow.

4 Mathematical Representation

In order to conveniently describe the data and algorithms in a mathematical
way, we will typically use vectors. Thus, the dataset could be represented
as

coffee 1 0 0

tea 0 0 1

milk 1 0 1

beer 0 0 0

diapers 0 0 1

aspirin 0 1 0

as x1 =
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0
0
0

















,x2 =

















0
0
0
0
0
1

















,x3 =

















0
1
1
0
1
0

















where each vector x = (x1, . . . , x6)
T is a 6 dimensional vector whose com-

ponents represent the values of each attribute. Note that the upper-index,
e.g.,x3 refers simply to the third datapoint (vector) in the dataset. (Some
care is needed since it is common in mathematics to use a2 to refer to aTa.
I will also use this notation in the text – hopefully the context should dispel
any confusion.)

In general, we can represent any dataset as a set of vectorsX =
{

x1, . . .xP
}

,
which would represent a dataset of P items. Normally I will use an index
(upper) to denote which datapoint we are referring to, and a suffix (lower)
to denote the attribute (or component) of the data vector. Thus x4

6 would
represent the sixth attribute of the fourth datapoint. A dataset, being a
collection of datapoints can then be represented as a matrix X in which the
element Xij = xji .

4.1 A Matlab Interlude

% A first look at matlab

% Here are a set of datapoints (done in a longhanded way!)

x(:,1)=[-2 7]’; x(:,2)=[-6 22]’; x(:,3)=[-1 1]’; x(:,4)=[11 1]’;

x(:,5)=[-1 -8]’; x(:,6)=[46 52]’;x(:,7)=[33 40]’; x(:,8)=[42 33]’;

x(:,9)=[32 54]’; x(:,10)=[45 39]’;

x % each *column* represents a 2 dimensional datapoint, of which there are 10

mean(x’)’ % need transposes since matlab assumes that data are arranged

% in rows. To be consistent with our mathematics though, we

% will use the column representation (at the cost of having to

% use a few more transposes)

plot(x(1,:),x(2,:),’o’)
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5 What kind of Approaches?

This course focusses on a modelling approach, framed within probability
theory. Some of the approaches we talk about (such as decision trees, and
KNN and K-means clustering) are non-probabilistic. However, probabilistic
versions of these methods have been developed but are beyond the scope of
this course.

5.1 Why do we expect to be able to learn anything?

Arguably all machine learning approaches are based on some notion of
smoothness or regularity underlying the mechanism that generated the ob-
served data. Roughly speaking : if two people (datapoints) are close neigh-
bours, they are likely to behave similarly. We will usually frame this intu-
ition mathematically, in which we will need to be precise by what we mean
by ‘close’ and ‘behave’. This naturally places machine learning in the arena
of measuring distances between datapoints, a natural place for vectors and
vector algebra.

5.2 How are we going to learn?

The general procedure will be to postulate some model and then adjust it’s
parameters to best fit the data. For example in a regression problem, we
may think that the data {(xµ, yµ), µ = 1, . . . , P}, where x is an input and y
an output, is well modelled by the function y = wx, and our task is to find
an appropriate setting of the parameter w. An obvious way to do this is to
see how well the current model predicts the training data that we have, and
then to adjust the parameter w to minimise the errors that our model makes
on predicting the data. This general procedure will usually involve there-
fore optimisation methods, usually in high dimensional spaces (although the
above is a one-dimensional example). Sometimes, the parameter space that
we will search for a solution in is discrete (for example, in evolution, the
parameters are the discrete sequence of genes, and the optimisation func-
tion is survival). Optimisation in discrete parameter spaces can be veryGenetic Algorithms
difficult – however, there are many approaches developed in mathematics to
do this. Recently, some computer scientists have been excited by ‘genetic
algorithms’ – it is worth bearing in mind that these are simply discrete
optimisation methods (and in my opinion, rather poor ones). Why should
optimisation mechanisms based on sexual selection have any relevance to
finding the best construction of a bridge? My point is that you shouldn’t be
swayed by applying ‘sexy’ methods to areas which are not obviously related.

In the case that there is noise on the data (sometimes, the father mightNoise, overfitting and
Generalisation be inconsistent in his labelling of sports cars, or there might be essentially

random perturbations on the FTSE index), we don’t want to model this
noise. That is, we have to be careful to make sure that our models only
capture the underlying process that we are truly interested in, and not
necessarily the exact details of the training data. If we have an extremely
flexible model, it may overfit noisy training data be a very poor predictor of
future novel inputs (that is, it will generalise poorly). This is very important
topic and central to machine learning. We shall return to this in a later
chapter.
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6 Mathematics Required

The material here is presented to give you an idea of the level of mathematics required. Don’t worry if you
don’t understand too well all of the following. However, it would be very useful for you to foster enthusiasm
for learning this material since I may ask exam questions using this level of mathematics.

6.1 Vectors

The course assumes that you are familiar with the basics of vectors and
vector calculations. Let x denote the n-dimensional vector with components

(x1, x2, · · · , xn)

Then |x| denotes the length of this vector, using the usual Euclidian defini-
tion:

|x| =
√

x2
1 + x2

2 + · · ·+ x2
n

The inner product w · x is defined as:

w · x =
n
∑

i=1

wixi

and has a natural geometric interpretation as:

w · x = |w| |x| cos(θ)

where θ is the angle between the two vectors. Thus if the lengths of two
vectors are fixed their inner product is largest when θ = 0, whereupon one
is just some constant multiple of the other.

6.2 Matrices

The course assumes some familiarity with matrices, which are shown as
upper-case bold letters such as A. If the element of the i-th row and j-th
column is aij , then A

T denotes the matrix that has aji there instead - the
transpose of A. So, for example if A is a 3× 3 matrix:

A =





2 3 4
4 5 9
6 7 1





then the transpose (written AT ) is:

AT =





2 4 6
3 5 7
4 9 1





The product of two matrices A and B has
∑

k aikbkj in the i-th row and
j-th column.

The matrix I is the identity or unit matrix, necessarily square, with 1s on
the diagonal and 0s everywhere else. If det(A) denotes the determinant of
a square matrix A then the equation

det(A− λI) = 0

is called the characteristic polynomial of A. Using the example above, the
characteristic polynomial would be:

∣

∣

∣

∣

∣

∣

2− λ 3 4
4 5− λ 9
6 7 1− λ

∣

∣

∣

∣

∣

∣

= 0



Learning from Data 1 : David Barber 9

which is

(2− λ)((5− λ)(1− λ)− 63)− 3(4(1− λ)− 54) + 4(28− 6(5− λ)) = 0

which simplifies to:
−λ3 + 8λ2 + 82λ+ 26 = 0

Note that a square matrix must satisfy its own characteristic polynomial, by
definition of the polynomial, so (pre- or post-multiplying through by A−1)
it provides a way to calculate the inverse of a matrix using only matrix
multiplication, if that inverse exists. Clearly the inverse exists if and only if
the matrix is square and det(A) 6= 0 (note that det(A) is the constant term
in the characteristic polynomial).

The roots of the characteristic polynomial are called the eigenvalues of the
matrix. Note that if A is an m × n matrix and x is an n-dimensional
(column) vector, then

y = Ax

represents a linear map into an m-dimensional space. If A happens to be a
square matrix then any vector which is transformed by the linear map into
a scalar multiple of itself is called an eigenvector of that matrix. Obviously,
in that case Ax = λx for some λ. The eigenvectors can be found by finding
the eigenvalues and then solving the linear equation set:

(A− λI)x = 0

An orthogonal matrix is a square matrix A such that AT = A−1. Such
matrices represent a mapping from one rectangular co-ordinate system to
another. For such a matrix,

AAT = I

- the inner product of any two different rows is 0 and the inner product of
any row with itself is 1.

6.3 Basic combinatorics

The number of ways of selecting k items from a collection of n items is

(

n
k

)

=
n!

k!(n− k)!

if the ordering of the selection doesn’t matter. This quantity is also the
coefficient of xk in the expansion of (1 + x)n. Stirling’s formula provides a
useful approximation for dealing with large factorials:

n! ≈ nne−n
√
2πn

There are a huge number of formulae involving combinations. For example,
since (1 + x)n+1 = (1 + x)n(1 + x) it is clear that

(

n
k

)

+

(

n
k + 1

)

=

(

n+ 1
k + 1

)

and so on.

6.4 Basic probability and distributions

A random variableX is a variable which, in different experiments carried out
under the same conditions, assumes different values xi, each of which then
represents a random event. A discrete random variable can take one of only
a finite, or perhaps a countably infinite, set of values. A continuous random
variable can take any value in a finite or infinite interval. Random variables
are completely characterised by their probability density and distribution
functions.
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For a discrete random variable, if p(X = x) is the probability that it takes
the value x then

F (x) = p(X < x)

is the distribution function of X. For a continuous random variable, there
is a probability density function f(x) such that

∫

∞

−∞

f(x) dx = 1

and the distribution function is then:

F (x) =

∫ x

−∞

f(t) dt

For a discrete random variable, the mean value µ is

µ =
∑

xip(X = xi)

and for a continuous variable it is

µ =

∫

∞

−∞

tf(t) dt

The variance σ2 is, for a discrete variable:

σ2 =
∑

(xi − µ)2p(X = xi)

and for a continuous variable:

σ2 =

∫

∞

−∞

(t− µ)2f(t) dt

There are several widely-occurring distributions that are worth knowing
about. Suppose that some event will happen with fixed probability p. Then
the probability that it will happen exactly k times in n trials is

(

n
k

)

pk(1− p)n−k

and this is the binomial distribution. It has mean np and variance np(1−p).
If one lets n → ∞ one gets the Gaussian or normal distribution, typically
parameterised by two constants a and b; it has density function

1

a
√
2π

e−(x−b)2/(2a2)

with mean b and variance a2. If one starts with the binomial distribution and
lets n → ∞ and p → 0 with the extra assumption that np = a, where a is
some constant, then one gets the Poisson distribution with density functionWe will not use the Poisson

distribution in this course
ake−a

k!

with mean and variance both a.

6.5 Partial differentiation

If z = f(x1, x2, · · · , xn) is a function of n independent variables then one
can form the partial derivative of the function with respect to one variable
(say xi),

∂f

∂xi

by treating all other variables as constant. For example, if

f = xy + y3
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x1

x2

f(x)

Figure 1: Interpreting the gradient. The ellipses are contours of constant
function value, f = const. At any point x, the gradient vector ∇f(x) points
along the direction of maximal increase of the function.

then
∂f

∂x
= y

∂f

∂y
= x+ 3y2

The geometric significance of a quantity such as ∂f
∂x is as follows. If the

function f is plotted and represents some suitably well-behaved surface,
then this partial derivative represents the slope of the surface in a direction
parallel to the x-axis at any given point (x, y). The total derivative dz is
given by

dz =
∑

i

∂z

∂xi
dxi

and clearly, if all the xi are functions of one variable t then

dz

dt
=
∑

i

∂z

∂xi

dxi
dt

There is a directly analogous version of this ‘chain rule’ for the case where
the xi are each functions of several variables and you wish to find the partial
derivative of z with respect to one of those variables.

Exercise: Find the partial derivatives of the function

f(x, y, z) = (x+ 2y)2 sin (xy)

6.6 The gradient vector operator

Consider a function φ(x) that depends on a vector x. We are interested in
how the function changes when the vector x changes by a small amount :
x → x + δ, where δ is a vector whose length is very small. According to a
Taylor expansion, the function φ will change to

φ (x+ δ) = φ(x) +
∑

i

δi
∂φ

∂xi
+O

(

δ
2
)

(6.1)

We can interpret the summation above as the scalar product between the
vector ∇φ with components [∇φ]i = ∂φ

∂xi

and δ.

φ (x+ δ) = φ(x) + (∇φ)T δ +O
(

δ
2
)

(6.2)

6.7 Interpreting the Gradient ∇f(x)

The gradient points along the direction in which the function increases most
rapidly. Why?

Consider a direction p̂ (a unit legnth vector). Then a displacement, δ units
along this direction changes the function value to

f(x+ δp̂) ≈ f(x) + δ∇f(x) · p̂
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The direction p̂ for which the function has the largest change is that which
maximises the overlap

∇f(x) · p̂ = |∇f(x)||p̂| cos θ = |∇f(x)| cos θ

where θ is the angle between p̂ and ∇f(x). The overlap is maximised when
θ = 0, giving p̂ = ∇f(x)/|∇f(x)|. Hence, the direction along which the
function changes the most rapidly is along ∇f(x).

6.8 Optimization: Lagrange multipliers

Suppose that you wish to find the stationary points (maxima or minima)
of some n-argument function f(x) = f(x1, · · · , xn), subject to the m con-
straints g1(x) = 0, · · · , gm(x) = 0. Lagrange showed that they could be
found as the solution of the (n + m) equations in the (n + m) variables
x1, · · · , xn, λ1, · · · , λm:

∂f

∂x1
−

m
∑

j=1

λj
∂gj
∂x1

= 0

· · ·
∂f

∂xn
−

m
∑

j=1

λj
∂gj
∂xn

= 0

g1(x) = 0

· · ·
gm(x) = 0

where the λj are m specially-introduced variables called Lagrange multipli-
ers. This theorem provides a handy way to tackle a range of optimization
problems. Notice that the above equations are the (n+m) partial derivatives
of the function

f −
m
∑

j=1

λjgj

each set to zero.

For example, to find the maximum of f(x, y) = x+y subject to the constraint
x2 + y2 = 1, solve:

1− 2λx = 0

1− 2λy = 0

x2 + y2 − 1 = 0

to get x = y = λ = ±1/
√
2, after which you should then check to determine

which of these two solutions is the true maximum.

Exercise: Find the maximum of y−x subject to the constraint y+x2 = 4.

You can find the answer to the same problem experimentally as follows.
Plot the graph of y = 4 − x2 and the graph of y = x + m, and find the
largest value of m such that the two graphs still intersect.

7 Optimization methods

We are given a function E(w) which depends on the vector of variables w.
We can also calculate the vector of partial derivatives (or gradient) g(w)
where gi = ∂E/∂wi. How should be use this information to optimize E?
There are two methods that we consider

1. Gradient descent with fixed stepsize
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Figure 2: Optimisation using line search along steepest descent directions.
Rushing off following the steepest way downhill from a point (and continuing
for a finite time in that direction) doesn’t always result in the fastest way
to get to the bottom!

2. Gradient descent with line searches

One of the most powerful general purpose optimisation methods is conjugate-
gradients (this is implemented in the NETLAB package for MATLAB), and
I would recommend that you use this in any (continuous) optimisation prob-
lem. It is based on line search techniques.

7.1 Gradient descent with fixed stepsize

Locally, if we are at point w, the quickest way to decrease E is to take a
step in the direction −g(w). If we make the update equation

w(t+ 1) = w(t)− ηg(t)

then we are doing gradient descent with fixed stepsize η. If η is non-
infinitesimal, it is always possible that we will step over the true minimum.
Making η very small guards against this, but means that the optimization
process will take a very long time to reach a minimum.

7.2 Gradient descent with line searches

An obvious extension to the idea of gradient descent is to choose the direc-
tion of steepest descent, as indicated by the gradient g, but to calculate the
value of the step to take which most reduces the value of E when moving in
that direction. This involves solving the one-dimensional problem of min-
imizing E(w(t) − λg(t)) with respect to λ, and is known as a line search.
That step is then taken and the process repeated again.

Finding the size of the step takes a little work; for example, you might find
three points along the line such that the error at the intermediate point is
less than at the other two, so that there is some minimum along the line
lies between the first and second or between the second and third, and some
kind of interval-halving approach can then be used to find it. (The minimum
found in this way, just as with any sort of gradient-descent algorithm, may
not be a global minimum of course.) There are several variants of this theme.
Notice that if the step size is chosen to reduce E as much as it can in that
direction, then no further improvement in E can be made by moving in
that direction for the moment. Thus the next step will have no component
in that direction; that is, the next step will be at right angles to the one
just taken. This can lead to zig-zag type behaviour in the optimisation, see
fig(2).

8 Just for Interest ....

Sections at the end of each chapter contain material of interest related to
the course.



Learning from Data 1 : David Barber 14

x

r e

O
x

x

x
x

x

x

x

x

Figure 3: Learning the best line fit through a set of data. For zero mean
data, we want to find the best unit length vector e such that when data
points are projected onto the direction e, the residual r is minimised.

8.1 Whence optimisation?

Optimisation plays a central role in learning from data. For motivation,This section is rather more
technical and not directly

examinable. It is provided for
the interest of the more
motivated student and

demonstrates that vector
algebra, eigenvectors and
Lagrange multipliers are

central to even the simplest
data modelling problems.

consider the following simple problem of trying to explain data by a straight
line.

Let xµ, µ = 1, . . . P be a set of P data points. We wish to “learn” the best
straight line approximation to the data.

Each datapoint x can be expressed in terms of component parallel to the
direction e, and one orthogonal to e:

x = (x · e)e+ r (8.1)

(remember that e · e = 1. Hence the squared length of the residual vector r
is

r2 = (x− (x · e)e)2 = x·x−2(x·e)(x·e)+(x·e)(x·e) = x·x−(x·e)2 (8.2)

Thus, finding e that minimises the residual is equivalent to finding e that
maximises (x·e)2. If we wish to find the best direction for the whole dataset,
the problem can be stated as

Find e to maximise

P
∑

µ=1

(xµ · e)2 such that e · e = 1 (8.3)

Thus, this very simple problem of learning a straight line requires us to
optimise a quadratic function subject to constraints.

We can restate the problem as

Find e to maximise eTAe such that e · e = 1 (8.4)

where A is the correlation matrix of the data, A = (1/P )
∑

µ xµx
T
µ . One

way to solve this is to use the Lagrangian method:

L = eTAe+ λ(1− eTe) (8.5)

The gradient ∇e of L gives the condition Ae = λe. That is, e is an eigenvec-
tor of the correlation matrix. The eigenvector must be normalised to satisfy
the constraint. For a 2 dimensional problem, there will, in general, be two
eigenvectors – that corresponding to the largest eigenvalue is the solution
that we require (since the error eTAe = λ at the optimum).


