
Learning from Data 1

Nearest Neighbour Classification

David Barber

dbarber@anc.ed.ac.uk

course page : http://anc.ed.ac.uk/∼dbarber/lfd1/lfd1.html
c© David Barber 2001, 2002

1



Learning from Data 1 : c© David Barber 2001,2002 2

In classification, we have a training set of data which contains both at-
tributes x and a class label c. For example, the vector x might represent an
image of a digit, and c labels which digit it is, c ∈ {0, 1, . . . , 9}. A dataset D
of P training datapoints is given by D = {xµ, cµ}, µ = 1, . . . , P . The aim
is, given a novel x, to return the “correct” class c(x). A simple strategy we
adopt in this chapter can be very loosely stated as:

Things x which are similar (in x-space) should have the same class labelIn other words, ‘just say
whatever your neighbour

says!’
(This is a kind of smoothness assmuption. Note that in this chapter, we
won’t explicitly construct a ‘model’ of the data in the sense that we could
generate fake representative data with the model. It is possible, however, to
come up with a model based on the above neighbourhood type idea which
does just this. We will see how to do this when we learn about density
estimation in a later chapter.)

The key word in the above strategy is ‘similar’. Given two vectors x andWhat does ‘similar’ mean?
y representing two different datapoints, how can we measure similarity?
Clearly, this would seem to be rather subjective – two datapoints that one
person thinks are ‘similar’ may be to someone else dissimilar.

Usually we define a function d(x,y), symmetric in its arguments (d(x,y) =The dissimilarity function
d(x,y) d (y,x)) that measures the dissimilarity between the datapoints x and y.

It is common practice to adopt a simple measure of dissimilarity based
on the squared euclidean distance d(x,y) = (x − y)T (x − y) (often more
conveniently written (x − y)2) between the vector representations of the
datapoints. There can be problems with this but, in general, it’s not an
unreasonable assumption. However, one should bear in mind that more
general dissimilarity measures can, and often are used in practice.

1 Nearest Neighbour

To classify a new vector x, given a set of training data (xµ, cµ), µ = 1, . . . , P :

1. Calculate the dissimilarity of the test point x to each of the stored
points, dµ = d (x,xµ).

2. Find the training point xµ
∗

which is ‘closest’ to x by finding that µ∗

such that dµ
∗

< dµ for all µ = 1, . . . , P .

3. Assign the class label c(x) = cµ
∗

.

In the case that that there are two or more ‘equidistant’ (or equi-dissimilar)
points with different class labels, the most numerous class is chosen. If there
is no one single most numerous class, we can use the K-nearest-neighbours
case described in the next section.

1

1
1

2
2

2
2

2 2 2

2
3

3
3

3

3

11

1
?

Figure 1: In nearest neighbour classification, a new vector with an unknown
label, ?, is assigned the label of the vector in the training set which is nearest.
In this case, the vector will be classified as a 2.



Learning from Data 1 : c© David Barber 2001,2002 3

function y = nearest_neighbour(xtrain, xtest, t)

% calculate the nearest (single) neighbour classification

% (uses the squared distance to measure dissimilarity)

ntrain = size(xtrain,2); % number of training points

ntest = size(xtest,2); % number of test points

% Compute squared distances between vectors from the training and test sets

% This is the obvious (but very slow way) to calculate distances :

for i = 1:ntrain

for j = 1:ntest

sqdist(i,j) = sum((xtrain(:,i)-xtest(:,j)).^2);

end

end

% This is the super fast way (in MATLAB) to do this :

% sqdist = repmat(sum(xtrain’.^2,2),1,ntest)+ ...

% repmat(sum(xtest’.^2,2)’,ntrain,1)-2*xtrain’*xtest;

[vals, kindex] = min(sqdist); y = t(kindex);

The following is a small demo that uses the above nearest-neighbour function.

% Nearest Neighbour demo : 3 classes

xtrain(:,1:10) = randn(2,10); % 10 two-dimesional training points

label(1,1:10)=1; % class one

xtrain(:,11:20) = randn(2,10)+repmat([2 2.5]’,1,10); % 10 two-dimesional training points

label(1,11:20)=2; % class two

xtrain(:,21:30) = randn(2,10)-repmat([2 2.5]’,1,10); % 10 two-dimesional training points

label(1,21:30)=3; % class three

% plot the training data :

plot(xtrain(1,1:10),xtrain(2,1:10),’r.’);text(xtrain(1,1:10),xtrain(2,1:10),’1’);

hold on

plot(xtrain(1,11:20),xtrain(2,11:20),’b.’);text(xtrain(1,11:20),xtrain(2,11:20),’2’)

plot(xtrain(1,21:30),xtrain(2,21:30),’g.’);text(xtrain(1,21:30),xtrain(2,21:30),’3’)

% now find the class for a bunch of novel points xquery

xquery = 2.5*randn(2,15) + repmat([1.5 0.5]’,1,15);

nn_label = nearest_neighbour(xtrain, xquery, label)

plot(xquery(1,:),xquery(2,:),’k.’)

nn_label1=find(nn_label==1);nn_label2=find(nn_label==2);nn_label3=find(nn_label==3);

text(xquery(1,nn_label1),xquery(2,nn_label1),’1’);

text(xquery(1,nn_label2),xquery(2,nn_label2),’2’);

text(xquery(1,nn_label3),xquery(2,nn_label3),’3’); hold off

In general, the decision boundary is the boundary in input space such thatThe decision boundary
our decision as to the class of the input changes as we cross this boundary.
In the nearest neighbour algorithm above based on the squared euclidean
distance, the decision boundary is determined by the lines which are the
perpendicular bisectors of the closet training points with different trainingVoronoi Tessellation
labels, see fig(2). This is called a Voronoi tessellation. The decision bound-
ary for the data from fig(1) is shown in fig(3).

1.1 Problems with Nearest Neighbours

The nearest neighbours algorithm is extremely simple yet rather powerful,
and used in many applications. There are, however, some potential draw-
backs:



Learning from Data 1 : c© David Barber 2001,2002 4

1

1

2

1

Figure 2: The decision boundary for the nearest neighbour classification rule
is piecewise linear with each segment corresponding to the perpendicular
bisector between two datapoints belonging to different classes.

1

1
1

2
2

2
2

2 2 2

2
3

3
3

3

3

11

1

Figure 3: Decision boundary for the nearest neighbour classification rule.

How should we measure the distance between points? Typically one uses
the euclidean square distance, as given in the algorithm above. This may
not always be appropriate. Consider a situation such as in fig(4), in which
the euclidean distance leads to an undesirable result. If we use the EuclieanInvariance to linear

transformation distance, (x−y)T (x−y) then the distance between the orthogonally trans-
formed vectors Mx and My (where MTM is the identity matrix) remains
the same. (This is not true for the Mahalanobis distance). Since classi-
fication will be invariant to such transformations, this shows that we do
not make a sensible model of how the data is generated – this is solved by
density estimation methods – see later chapter.

The Mahalanobis distance (x − y)TAi(x − y) where usually Ai is the in-Mahalanobis Distance
verse covariance matrix of the data from class i can overcome some of these
problems. I think it’s better to use density estimation methods.

In the simple version of the algorithm as explained above, we need to store
the whole dataset in order to make a classification. However, it is clear
that, in general, only a subset of the training data will actually determine
the decision boundary. This can be addressed by a method called dataData Editing
editing in which datapoints which do not affect (or only very slightly) the
decision boundary are removed from the training dataset.

Each distance calculation could be quite expensive if the datapoints areDimension Reduction
high dimensional. Principal Components Analysis (see chapter on linear
dimension reduction) is one way to address this, by first replacing each
high dimensional datapoing xµ with it’s low dimensional PCA components

vector pµ. The euclidean distance of the of two datapoints
(

xa − xb
)2
is then

approximately given by
(

pa − pb
)2
– thus we need only to calculate distance

among the PCA representations of data. This can often also improve the
classification accuracy.



Learning from Data 1 : c© David Barber 2001,2002 5

1

2

? 1

2
222

2
2 2 2 2

1
1

1
1 1 1

1

Figure 4: Consider data which lie close to (hyper)planes. The euclidean
distance would classify ? as belonging to class 2 – an undesirable effect.

?

2

2
1

Figure 5: InK-nearest neighbours, we centre a hypersphere around the point
we wish to classify. The first circle corresponds to the nearest neighbour
method, and we would therefore class ? as class 1. However, using the 3
nearest neighbours, we find that there are two 2’s and one 1 – and we would
therefore class ? as a 2.

An outlier is a ‘rogue’ datapoint which has a strange label – this maybe theSensitivity to outliers
result of errors in the database. If every other point that is close to this
rogue point has a consistently different label, we wouldn’t want a new test
point to take the label of the rogue point. K nearest neighbours is a way to
more robustly classify datapoints by looking at more than just the nearest
neighbour.

2 K Nearest Neighbours

As the name suggests, the idea here is to include more than one neighbour in
the decision about the class of a novel point x. I will here assume that we are
using the Euclidean distance as the simmilarity measure – the generalisation
to other dissimilarity measures is obvious. This is achieved by considering
a hypersphere centred on the point x with radius r. We increase the radius
r until the hypersphere contains exactly K points. The class label c(x) is
then given by the most numerous class within the hypersphere. This method
is useful since classifications will be robust against “outliers” – datapoints
which are somewhat anomalous compared with other datapoints from the
same class. The influence of such outliers would be outvoted.

Clearly if K becomes very large, then the classifications will become all theHow do we choose K?
same – simply classify each x as the most numerous class. We can argue
therefore that there is some sense in making K > 1, but certainly little sense
in making K = P (P is the number of training points). This suggests that
there is some “optimal” intermediate setting ofK. By optimal we mean thatGeneralisation
setting of K which gives the best generalisation performance. One way to
do this is to leave aside some data that can be used to test the performance
of a setting of K, such that the predicted class labels and the correct class
labels can be compared. How can we define this exactly will be the topic of
a later chapter.



Learning from Data 1 : c© David Barber 2001,2002 6

3 Handwritten digit Example

We will apply the nearest neighbour technique to classify handwritten digits.
In our first experiement, we will first look at a scenario in which there are
only two digit types, zeros, and ones. There are 300 training examples
of zeros, and 300 training examples of ones, fig(6). We will then use the
nearest neighbour method to predict the label of 600 test digits, where the
600 test digits are distinct from the training data and contain 300 zeros and
300 ones (although, of course, the test label is unknown until we assess the
performance of our predictions). The nearest neighbour method, applied to
this data, predicts correctly the class label of all 600 test points. The reason
for the high success rate is that examples of zeros and ones are sufficiently
different that they can be easily distinguished using such a simple distance
measure.

In a second experiment, a more difficult task is to distinguish between ones
and sevens. We repeated the above experiment, now using 300 training
examples of ones, and 300 training examples of sevens, fig(7). Again, 600
new test examples (containing 300 ones and 300 sevens) were used to assess
the performance. This time, 18 errors are found using nearest neighbour
classification – a 3% error rate for this two class problem. The 18 test points
that the nearest neighbour method makes are plotted in fig(8). Certainly,
this is a more difficult task than distinguishing between zeros and ones.
If we use K = 3 nearest neighbours, the classification error reduces to 14
– a slight improvement. Real world handwritten digit classification is bigState of the art
business. The best methods are able to classify real world digits (over all
10 classes) to an error of less than 1% – better than human performance.

Figure 6: (left) Some of the 300 training examples of the digit zero and
(right) some of the 300 training examples of the digit one.

Figure 7: Some of the 300 training examples of the digit seven.

Figure 8: The Nearest Neighbour method makes 18 errors out of the 600 test
examples. The 18 test examples that are incorrectly classified are plotted
(above), along with their nearest neightbour in the training set (below).


