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Naive Bayes

I Typical example: “Bayesian Spam Filter”.
I Naive means naive. Bayesian methods can be much more

sophisticated.
I Basic assumption: conditional independence.
I Given the class (eg “Spam”, “Ham”), whether one data

item (eg word) appears is independent of whether another
appears.

I Invariably wrong! But useful anyway.
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Why?

I Easy to program. Simple and transparent.
I Fast to train. Fast to use.
I Can deal with uncertainty.
I Probabilistic.
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Data types

I Naive Bayes assumption can use both continuous and
discrete data.

I However generally understood in terms of discrete data.
I Binary and discrete very common. Do not use “1 of M”!
I E.g. Bag of words assumption for text classification:
I Can even mix different types of data
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Bag of Words

I Each document is represented by a large vector.
I Each element of the vector represents the presence (1) or

absence (0) of a particular word in the document.
I Certain words are more common in one document type

than another.
I Can build another form of class conditional model using

the conditional probability of seeing each word, given the
document class (e.g. ham/spam).

Amos Storkey, School of Informatics Learning from Data: Naive Bayes



Naive Bayes
The Spam Filter
Data Types
The Model

Conditional Independence

I P(X , Y ) = P(X )P(Y |X ).
I P(X , Y |C) = P(X |C)P(Y |X , C). Think of C as a class

label.
I The above is always true. However we can make an

assumption
I P(Y |X , C) = P(Y |C).
I Knowing about the value of X makes no difference to the

value Y takes so long as we know the class C.
I We say that X and Y are conditionally independent given

C.
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Example

I Probability of a person hitting Jim (J) and a person hitting
Michael (M) is most likely not independent.

I But they might be independent given that the person in
question is (or is not) a known member of the class of
bullies (B).

I P(J, M) 6= P(J)P(M)

I P(J, M|B) = P(J|B)P(M|B).
I B explains all of the dependence between J and M.
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Generally

I x1, x2, . . . , xn are said to be conditionally independent given
c iff

P(x|c) =
n∏

i=1

P(xi |c)

for x = (x1, x2, , . . . , xn).
I For example. We could have not just Jim and Michael, but

Bob, Richard and Tim too.
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Naive Bayes

I The equation on the previous slide is in fact the Naive
Bayes Model.

P(x|c) =
n∏

i=1

P(xi |c)

for x = (x1, x2, , . . . , xn).
I The x is our attribute vector. And the c is our class label.
I We want to learn P(c) and P(xi |c) from the data.
I We then want to find the best choice of c corresponding to

a new datum (inference)
I The form of P(xi |c) is usually given. But we do need to

learn the parameter.
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Working Example

I See sheet section 3.
I Have a set of attributes.
I Inference first: Bayes rule.
I Learning the model P(E),P(S),P(x |S),P(x |E)

I Naive Bayes assumption.
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Problems with Naive Bayes

I 1 of M encoding
I Failed conditional independence assumptions.
I Worst case: repeated attribute.
I Double counted, triple counted etc.
I Conditionally dependent attributes can have too much

influence.
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Spam Example

I Bag of words.
I Probability of ham containing each word. Probability of

spam containing each word.
I Prior probability of ham/spam.
I New document. Check the presence/absence of each

word.
I Calculate the spam probability given the vector of word

occurrence.
I How best to fool Naive Bayes? Introduce lots of hammy

words into the document. Each hammy word is viewed
independently and so they repeatedly count towards the
ham probability.
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Summary

I Conditional Independence
I Bag of Words
I Naive Bayes
I Learning Parameters
I Bayes Rule
I Working Examples
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