Learning from Data: Naive Bayes

Amos Storkey, School of Informatics

October 13, 2005

http://www.anc.ed.ac.uk/~amos/lfd/
Typical example: “Bayesian Spam Filter”.
Naive means naive. Bayesian methods can be much more sophisticated.
Basic assumption: conditional independence.
Given the class (eg “Spam”, “Ham”), whether one data item (eg word) appears is independent of whether another appears.
Invariably wrong! But useful anyway.
Why?

- Easy to program. Simple and transparent.
- Fast to train. Fast to use.
- Can deal with uncertainty.
- Probabilistic.
Naive Bayes assumption can use both continuous and discrete data.

However generally understood in terms of discrete data.

Binary and discrete very common. Do not use “1 of M”!

E.g. Bag of words assumption for text classification:

Can even mix different types of data
Bag of Words

- Each document is represented by a large vector.
- Each element of the vector represents the presence (1) or absence (0) of a particular word in the document.
- Certain words are more common in one document type than another.
- Can build another form of class conditional model using the conditional probability of seeing each word, given the document class (e.g. ham/spam).
Conditional Independence

- \(P(X, Y) = P(X)P(Y|X) \).
- \(P(X, Y|C) = P(X|C)P(Y|X, C) \). Think of \(C \) as a class label.
- The above is always true. However we can make an assumption
- \(P(Y|X, C) = P(Y|C) \).
- Knowing about the value of \(X \) makes no difference to the value \(Y \) takes so long as we know the class \(C \).
- We say that \(X \) and \(Y \) are conditionally independent given \(C \).
Example

- Probability of a person hitting Jim (J) and a person hitting Michael (M) is most likely not independent.
- But they might be independent given that the person in question is (or is not) a known member of the class of bullies (B).

\[P(J, M) \neq P(J)P(M) \]

\[P(J, M \mid B) = P(J \mid B)P(M \mid B). \]

- B explains all of the dependence between J and M.
Generally

- x_1, x_2, \ldots, x_n are said to be conditionally independent given c iff

$$P(x|c) = \prod_{i=1}^{n} P(x_i|c)$$

for $x = (x_1, x_2, \ldots, x_n)$.

- For example. We could have not just Jim and Michael, but Bob, Richard and Tim too.
The equation on the previous slide is in fact the Naive Bayes Model.

\[P(x|c) = \prod_{i=1}^{n} P(x_i|c) \]

for \(x = (x_1, x_2, \ldots, x_n) \).

- The \(x \) is our attribute vector. And the \(c \) is our class label.
- We want to learn \(P(c) \) and \(P(x_i|c) \) from the data.
- We then want to find the best choice of \(c \) corresponding to a new datum (inference).
- The form of \(P(x_i|c) \) is usually given. But we do need to learn the parameter.
Working Example

- See sheet section 3.
- Have a set of attributes.
- Inference first: Bayes rule.
- Learning the model $P(E), P(S), P(x|S), P(x|E)$
- Naive Bayes assumption.
Problems with Naive Bayes

- 1 of M encoding
- Failed conditional independence assumptions.
- Worst case: repeated attribute.
- Double counted, triple counted etc.
- Conditionally dependent attributes can have too much influence.
Spam Example

- Bag of words.
- Probability of ham containing each word. Probability of spam containing each word.
- Prior probability of ham/spam.
- New document. Check the presence/absence of each word.
- Calculate the spam probability given the vector of word occurrence.
- How best to fool Naive Bayes? Introduce lots of hammy words into the document. Each hammy word is viewed independently and so they repeatedly count towards the ham probability.
Summary

- Conditional Independence
- Bag of Words
- Naive Bayes
- Learning Parameters
- Bayes Rule
- Working Examples