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Layered Neural Networks (or MLPs)

I Background
I Single Neurons
I Relationship to logistic regression.
I Multiple Neurons.
I The transfer function.
I Different output types.
I Whole Model
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Neural Networks

I The field of neural networks grew up out of simple models
of neurons.

I Research was done into what networks of these neurons
could achieve.

I Neural networks proved to be a reasonable modelling tool.
I Which is funny really as they never were good models of

neurons...
I or of neural networks.
I But when understood in turns of learning from data, they

proved to be powerful.
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Recap: Previous Models

I Up to now:

y = f

∑
j

wjΦj(x)

 (1)

where f is the identity model (regression) or the logistic
function (logistic regression).

I The problem: Curse of dimensionality - what are good
basis functions Φ to choose?

I Extend this by adapting the Φj as well as wj .
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Simple Neural Model

I Input: x
I Output: g(a(x)) for activation a(x) = wT x + b and transfer

function g(·).
I Most commonly g(.) is logistic, but could be Gaussian

shaped.
I w is called a weight vector and b is called the bias.
I These are the parameter of a neuron.
I Note if the output of a neuron is understood as a class

probability, and g(·) is logistic, this is just a logistic
regression model.

I It has all the same properties!
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Single Neuron Function
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A single neuron returns functions of the projected distance
along some line. Left Gaussian transfer, right sigmoid transfer
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Logistic Regression

I The logistic regression model only copes with linear
decision boundaries.

I We want to model more complicated systems, with
nonlinear class boundaries.

I We can use features Φ(x) to get nonlinear decision
boundaries. But what features? Ideally features should
select different parts of the input space.

I But the neuron/logistic regression model is precisely a
model which selects two different parts of the input space!

I Set each feature Φj(x) to be a neuron model too.
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Layered Neural Models

I Suppose we have a layer of K simple neurons, all taking
the same input, but producing a different output.

I The output of this first neural layer (the hidden layer) can
now be viewed as a new input space.

I And if the parameters of the hidden layer neurons were
chosen well, we may find that two classes we are
interested in do have nearly linear decision boundaries in
the output space of this hidden layer.

I Then we are away! A standard logistic regression model
will solve our problems in this case.

I So we just need to put one neuron in the next layer (the
output layer) to produce the final classification.
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MLP architecture

Example: 1 hidden layer (bottom to top)

input units

hidden units

output units
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Output is

g (6g(7x + 3y − 8) + 2g(9x + 5y − 4)− 1)
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The Transfer Function

I The function used to add nonlinearity in the hidden layer
need not be a logistic; it need not return values in the
range [0, 1].

I This function is called the transfer function
I Choose transfer function g(·) so that outputs of the net are

continuous and differentiable functions of the weights.
I The logistic or sigmoid function is the most common choice

(the tanh function is equivalent up to an additive or
multiplicative constant).

g(z) =
1

1 + e−z

tanh
(z

2

)
= 2g(z)− 1
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Logistic Function
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The logistic function has a simple derivative g′(z) = g(z)(1− g(z)).
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Different outputs

I What if we want a real valued output?
I Answer: We can set the output neuron to have a linear

transfer function.
I What if we want a multivariate output?
I Answer: we can have many neurons in the output layer, all

returning different variables.
I What if we wanted many classes?
I We pipe our multivariate output y through a logit or

softmax model:
P(n) =

exp(yn)∑
i exp(yi)
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Combining Neurons

I So what happens when we combine the output of different
neurons.

I Suppose we have two neurons, and we sum the output of
those two neurons.

I What sort of functions can we now represent?
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Combined Output of two Neurons

Representation of two hidden neurons
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Examples
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Multiple neurons return more complicated functions
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The Model

I Input layer: x.
I K Hidden layer neurons. Neuron i : hi(x) = g(ai(x)) for

activation ai(x) = wT
i x + bi .

I Output neuron: r(
∑K

i=1 vig(wT
i x + bi) + b).

I Typically g is logistic and r is linear/logistic.
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So what are Neural Networks

I They are simply nonlinear functions with many parameters.
I There is a weight and a bias parameter for each unit.
I That’s it really.
I Don’t over-glamorise them.
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Summary

I Neural network history
I Simple neurons and logistic regression
I What can a simple neuron do?
I Combining neurons
I Layered Neural Networks/Multilayer perceptrons
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