
Logistic Regression

Learning from Data: Logistic Regression

Amos Storkey, School of Informatics

October 20, 2005

http://www.anc.ed.ac.uk/∼amos/lfd/

Amos Storkey, School of Informatics Learning from Data: Logistic Regression



Logistic Regression

Recap

I Classification problems:
I On the basis of historical information, classify a new

instance as belonging to a particular class.
I Training data with targets (x, t).
I Sometimes validation data with targets.
I Test data: targets are only visible for evaluation of method.

I Have used class conditional modelling:
P(t |x) ∝ P(x|t)P(t). This is a generative approach.

I Now model P(t |x) directly. This is a discriminative
approach. Don’t bother modelling P(x).

Amos Storkey, School of Informatics Learning from Data: Logistic Regression



Logistic Regression

Which is the correct model?

I Two approaches encode different assumptions.
I Generative assumption: classes exist because data is

drawn from two different distributions.
I Discriminative assumption, class label is drawn dependent

on the value of x.
I Generative: Class → Data.
I Discriminative: Data → Class.
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Example

I The weight of men and women. Men and women have
different weight distributions because of characteristics of
gender: men are on average taller, and are therefore more
likely to have a higher weight.

I Weight and heart attacks. Obesity is a contributory factor
to heart attacks. We do not expect someone’s current
weight to be determined by the heart attack they are going
to have in the future!

I The underlying distribution of people’s weight does affect
the chance of someone with a given weight having a heart
attack. E.g. if the whole population on average lost weight,
does not affect the model.

I Can ignore the distribution of people’s weight.

Amos Storkey, School of Informatics Learning from Data: Logistic Regression



Logistic Regression

Is this rule hard and fast?

I No. In a given stationary (i.e. no distributions are
changing) circumstance, with no missing data, either
approach can be used.

I If the discriminative approach is used in a situation where a
generative approach is more appropriate, it just models the
P(x|t) and P(t) implicitly through
P(t |x) = P(x|t)P(t)/P(x).

I The discriminative approach often has the advantage that
more flexible model can be used for P(t |x) than for P(x|t).
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PMR versus LfD

I This is where PMR and LfD diverge.
I PMR is more to do with generative modelling, especially

through the use of belief networks.
I LfD is going to focus on discriminative modelling,

especially through neural networks and related methods.
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Two Class Discrimination

I Consider a two class case: t ∈ {0, 1}.
I Use a model of the form

P(t = 1|x) = f (x; w)

I f must be between 0 and 1. Furthermore the fact that
probabilities sum to one means

P(t = 0|x) = 1− f (x; w)

I What form should we use for f?
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The logistic function

I We need two things:
I A function that returns probabilities (i.e. stays between 0

and 1).
I A means of incorporating x dependencies through the

parameters w.
I The logistic (or sigmoid) function provides the first of these.
I f (x) = σ(x) ≡ 1/(1 + exp(−x)).
I As x goes from −∞ to ∞, so f goes from 0 to 1.
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Logistic Regression

The Logistic Function
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The Logistic Function σ(x) = 1
1+exp(−x) .
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Logistic Regression

The linear weights

I We need two things:
I A function that returns probabilities (i.e. stays between 0

and 1).
I A means of incorporating x dependencies through the

parameters w.
I A linear weighting scheme provides the second of these:
I P(t = 1|x) = σ(b + xT w).
I σ(x) = 0.5 when x = 0. Hence the decision boundary is

given by xT w = −b.
I Decision boundary is a d − 1 hyperplane for a d

dimensional problem.

Amos Storkey, School of Informatics Learning from Data: Logistic Regression
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The Linear Decision Boundary
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For two dimensional data the decision boundary is a line.
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Logistic regression

I The bias parameter b shifts the position of the hyperplane,
but does not alter the angle.

I The direction of the vector w affects the angle of the
hyperplane. The hyperplane is perpendicular to w.

I The magnitude of the vector w effects how certain the
classifications are.

I For small w most of the probabilities within a region of the
decision boundary will be near to 0.5.

I For large w probabilities in the same region will be close to
1 or 0.
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The Perceptron

I The perceptron is the special case of logistic regression
where the magnitude of w tends to infinity.

I Absolutely certain classification: all probabilities are 0 or 1.
I Define θ(x) = 1 if x > 0 and 0 otherwise.
I Have p(c = 1|x) = θ(b + xT w).
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Learning Logistic Regressors

I Want to set w and b using training data.
I As before:

I Write out the model and hence the likelihood
I Find the derivatives of the log likelihood w.r.t the

parameters.
I Adjust the parameters to maximize the log likelihood.
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Likelihood

I Assume data is independent and identically distributed.
I The likelihood is

p(D) =
N∏

i=1

P(t i |xi) =
N∏

i=1

P(t = 1|xi)t i
(

1− P(t = 1|xi)
)1−t i

(1)
I Hence the log likelihood is

log P(D) =
N∑

i=1

t i log P(t = 1|xi)+(1−t i) log
(

1− P(t = 1|xi)
)

(2)
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Logistic Regression Log Likelihood

I Using our assumed logistic regression model, the log
likelihood becomes

log P(D|w, b) =
N∑

i=1

t i log σ(b+wT xi)+(1−t i) log
(

1− σ(b + wT xi)
)

(3)
I We wish to maximise this value w.r.t the parameters w and

b.
I Cannot do this explicitly as before. Use an iterative

procedure.
I This will be considered in the next lecture.
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Summary

I The difference between generative and discriminative
models.

I The logistic function.
I Logistic regression.
I Hyperplane decision boundaries.
I The Perceptron.
I The likelihood for logistic regression.
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