
Learning from Data
Nearest Neighbour Classification

Copyright David Barber 2001-2004.
Course lecturer: Amos Storkey

a.storkey@ed.ac.uk
Course page : http://www.anc.ed.ac.uk/∼amos/lfd/

1



2

In classification, we have a training set of data which contains both attributes
x and a class label c. For example, the vector x might represent an image of a
digit, and c labels which digit it is, c ∈ {0, 1, . . . , 9}. A dataset D of P training
datapoints is given by D = {xµ, cµ}, µ = 1, . . . , P . The aim is, given a novel x,
to return the “correct” class c(x). A simple strategy we adopt in this chapter
can be very loosely stated as:

Things x which are similar (in x-space) should have the same class labelIn other words, ‘just say
whatever your neighbour

says!’ (This is a kind of smoothness assmuption. Note that in this chapter, we won’t
explicitly construct a ‘model’ of the data in the sense that we could generate
fake representative data with the model. It is possible, however, to come up
with a model based on the above neighbourhood type idea which does just this.
We will see how to do this when we learn about density estimation in a later
chapter.)

The key word in the above strategy is ‘similar’. Given two vectors x and yWhat does ‘similar’ mean?
representing two different datapoints, how can we measure similarity? Clearly,
this would seem to be rather subjective – two datapoints that one person thinks
are ‘similar’ may be to someone else dissimilar.

Usually we define a function d(x,y), symmetric in its arguments (d(x,y) =The dissimilarity function
d(x,y) d (y,x)) that measures the dissimilarity between the datapoints x and y.

It is common practice to adopt a simple measure of dissimilarity based on the
squared euclidean distance d(x,y) = (x− y)T (x− y) (often more conveniently
written (x − y)2) between the vector representations of the datapoints. There
can be problems with this but, in general, it’s not an unreasonable assumption.
However, one should bear in mind that more general dissimilarity measures can,
and often are used in practice.

1 Nearest Neighbour

To classify a new vector x, given a set of training data (xµ, cµ), µ = 1, . . . , P :

1. Calculate the dissimilarity of the test point x to each of the stored points,
dµ = d (x,xµ).

2. Find the training point xµ∗ which is ‘closest’ to x by finding that µ∗ such
that dµ∗ < dµ for all µ = 1, . . . , P .

3. Assign the class label c(x) = cµ∗ .

In the case that that there are two or more ‘equidistant’ (or equi-dissimilar)
points with different class labels, the most numerous class is chosen. If there is
no one single most numerous class, we can use the K-nearest-neighbours case
described in the next section.

1

1
1

2
2

2
2

2 2 2

2
3

3
3

3

3

11

1
?

Figure 1: In nearest neighbour classification, a new vector with an unknown
label, ?, is assigned the label of the vector in the training set which is nearest.
In this case, the vector will be classified as a 2.



3

function y = nearest_neighbour(xtrain, xtest, t)

% calculate the nearest (single) neighbour classification

% (uses the squared distance to measure dissimilarity)

ntrain = size(xtrain,2); % number of training points

ntest = size(xtest,2); % number of test points

% Compute squared distances between vectors from the training and test sets

% This is the obvious (but very slow way) to calculate distances :

for i = 1:ntrain

for j = 1:ntest

sqdist(i,j) = sum((xtrain(:,i)-xtest(:,j)).^2);

end

end

% This is the super fast way (in MATLAB) to do this :

% sqdist = repmat(sum(xtrain’.^2,2),1,ntest)+ ...

% repmat(sum(xtest’.^2,2)’,ntrain,1)-2*xtrain’*xtest;

[vals, kindex] = min(sqdist); y = t(kindex);

The following is a small demo that uses the above nearest-neighbour function.

% Nearest Neighbour demo : 3 classes

xtrain(:,1:10) = randn(2,10); % 10 two-dimesional training points

label(1,1:10)=1; % class one

xtrain(:,11:20) = randn(2,10)+repmat([2 2.5]’,1,10); % 10 two-dimesional training points

label(1,11:20)=2; % class two

xtrain(:,21:30) = randn(2,10)-repmat([2 2.5]’,1,10); % 10 two-dimesional training points

label(1,21:30)=3; % class three

% plot the training data :

plot(xtrain(1,1:10),xtrain(2,1:10),’r.’);text(xtrain(1,1:10),xtrain(2,1:10),’1’);

hold on

plot(xtrain(1,11:20),xtrain(2,11:20),’b.’);text(xtrain(1,11:20),xtrain(2,11:20),’2’)

plot(xtrain(1,21:30),xtrain(2,21:30),’g.’);text(xtrain(1,21:30),xtrain(2,21:30),’3’)

% now find the class for a bunch of novel points xquery

xquery = 2.5*randn(2,15) + repmat([1.5 0.5]’,1,15);

nn_label = nearest_neighbour(xtrain, xquery, label)

plot(xquery(1,:),xquery(2,:),’k.’)

nn_label1=find(nn_label==1);nn_label2=find(nn_label==2);nn_label3=find(nn_label==3);

text(xquery(1,nn_label1),xquery(2,nn_label1),’1’);

text(xquery(1,nn_label2),xquery(2,nn_label2),’2’);

text(xquery(1,nn_label3),xquery(2,nn_label3),’3’); hold off

In general, the decision boundary is the boundary in input space such that ourThe decision boundary
decision as to the class of the input changes as we cross this boundary. In the
nearest neighbour algorithm above based on the squared euclidean distance,
the decision boundary is determined by the lines which are the perpendicular
bisectors of the closet training points with different training labels, see fig(2).Voronoi Tessellation
This is called a Voronoi tessellation. The decision boundary for the data from
fig(1) is shown in fig(3).

1.1 Problems with Nearest Neighbours

The nearest neighbours algorithm is extremely simple yet rather powerful, and
used in many applications. There are, however, some potential drawbacks:

How should we measure the distance between points? Typically one uses the



4

1

1

2

1

Figure 2: The decision boundary for the nearest neighbour classification rule is
piecewise linear with each segment corresponding to the perpendicular bisector
between two datapoints belonging to different classes.

1

1
1

2
2

2
2

2 2 2

2
3

3
3

3

3

11

1

Figure 3: Decision boundary for the nearest neighbour classification rule.

euclidean square distance, as given in the algorithm above. This may not always
be appropriate. Consider a situation such as in fig(4), in which the euclidean
distance leads to an undesirable result. If we use the Eucliean distance, (x −Invariance to linear

transformation y)T (x−y) then the distance between the orthogonally transformed vectors Mx
and My (where MT M is the identity matrix) remains the same. (This is not
true for the Mahalanobis distance). Since classification will be invariant to such
transformations, this shows that we do not make a sensible model of how the
data is generated – this is solved by density estimation methods – see later
chapter.

The Mahalanobis distance (x − y)T Ai(x − y) where usually Ai is the inverseMahalanobis Distance
covariance matrix of the data from class i can overcome some of these problems.
I think it’s better to use density estimation methods.

In the simple version of the algorithm as explained above, we need to store the
whole dataset in order to make a classification. However, it is clear that, in
general, only a subset of the training data will actually determine the decision
boundary. This can be addressed by a method called data editing in whichData Editing
datapoints which do not affect (or only very slightly) the decision boundary are
removed from the training dataset.

Each distance calculation could be quite expensive if the datapoints are highDimension Reduction
dimensional. Principal Components Analysis (see chapter on linear dimension
reduction) is one way to address this, by first replacing each high dimensional
datapoing xµ with it’s low dimensional PCA components vector pµ. The eu-
clidean distance of the of two datapoints

(
xa − xb

)2 is then approximately given
by

(
pa − pb

)2 – thus we need only to calculate distance among the PCA repre-
sentations of data. This can often also improve the classification accuracy.



5

1

2

? 1

2
222

2
2 2 2 2

1
1

1
1 1 1

1

Figure 4: Consider data which lie close to (hyper)planes. The euclidean distance
would classify ? as belonging to class 2 – an undesirable effect.

?

2

2
1

Figure 5: In K-nearest neighbours, we centre a hypersphere around the point we
wish to classify. The first circle corresponds to the nearest neighbour method,
and we would therefore class ? as class 1. However, using the 3 nearest neigh-
bours, we find that there are two 2’s and one 1 – and we would therefore class
? as a 2.

An outlier is a ‘rogue’ datapoint which has a strange label – this maybe theSensitivity to outliers
result of errors in the database. If every other point that is close to this rogue
point has a consistently different label, we wouldn’t want a new test point to
take the label of the rogue point. K nearest neighbours is a way to more robustly
classify datapoints by looking at more than just the nearest neighbour.

2 K Nearest Neighbours

As the name suggests, the idea here is to include more than one neighbour in
the decision about the class of a novel point x. I will here assume that we are
using the Euclidean distance as the simmilarity measure – the generalisation
to other dissimilarity measures is obvious. This is achieved by considering a
hypersphere centred on the point x with radius r. We increase the radius r
until the hypersphere contains exactly K points. The class label c(x) is then
given by the most numerous class within the hypersphere. This method is
useful since classifications will be robust against “outliers” – datapoints which
are somewhat anomalous compared with other datapoints from the same class.
The influence of such outliers would be outvoted.

Clearly if K becomes very large, then the classifications will become all the sameHow do we choose K?
– simply classify each x as the most numerous class. We can argue therefore that
there is some sense in making K > 1, but certainly little sense in making K = P
(P is the number of training points). This suggests that there is some “optimal”
intermediate setting of K. By optimal we mean that setting of K which givesGeneralisation
the best generalisation performance. One way to do this is to leave aside some
data that can be used to test the performance of a setting of K, such that the
predicted class labels and the correct class labels can be compared. How we
define this is the topic of a later chapter.



6

3 Handwritten digit Example

We will apply the nearest neighbour technique to classify handwritten digits. In
our first experiement, we will first look at a scenario in which there are only two
digit types, zeros, and ones. There are 300 training examples of zeros, and 300
training examples of ones, fig(6). We will then use the nearest neighbour method
to predict the label of 600 test digits, where the 600 test digits are distinct from
the training data and contain 300 zeros and 300 ones (although, of course, the
test label is unknown until we assess the performance of our predictions). The
nearest neighbour method, applied to this data, predicts correctly the class label
of all 600 test points. The reason for the high success rate is that examples of
zeros and ones are sufficiently different that they can be easily distinguished
using such a simple distance measure.

In a second experiment, a more difficult task is to distinguish between ones and
sevens. We repeated the above experiment, now using 300 training examples of
ones, and 300 training examples of sevens, fig(7). Again, 600 new test examples
(containing 300 ones and 300 sevens) were used to assess the performance. This
time, 18 errors are found using nearest neighbour classification – a 3% error rate
for this two class problem. The 18 test points on which the nearest neighbour
method makes errors are plotted in fig(8). Certainly this is a more difficult
task than distinguishing between zeros and ones. If we use K = 3 nearest
neighbours, the classification error reduces to 14 – a slight improvement. RealState of the art
world handwritten digit classification is big business. The best methods classify
real world digits (over all 10 classes) to an error of less than 1% – better than
human performance.

Figure 6: (left) Some of the 300 training examples of the digit zero and (right)
some of the 300 training examples of the digit one.

Figure 7: Some of the 300 training examples of the digit seven.

Figure 8: The Nearest Neighbour method makes 18 errors out of the 600 test ex-
amples. The 18 test examples that are incorrectly classified are plotted (above),
along with their nearest neightbour in the training set (below).


