
Learning from Data
Logistic Regression

Copyright David Barber 2001-2004.
Course lecturer: Amos Storkey

a.storkey@ed.ac.uk
Course page : http://www.anc.ed.ac.uk/∼amos/lfd/

1

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0

0

0

0

1

1

1

1 1

Figure 1:

1 Introduction

A common application of machine learning is to classify a novel instance x as
belonging to a particular class. Here we concentrate on only two class prob-
lems. Explicitly, we are given some training data, D = {(xµ, tµ), µ = 1 . . . P},
where the targets c ∈ {0, 1}. An example is given is given in fig(1) in which
the training inputs x are two dimensional real values, and the associated
target values are plotted.

We need to make an assignment for a novel point x to one of the two classes.
More generally, we can assign the probability that a novel input x belongs
to class 1

p(c = 1|x) = f(x;w) (1.1)

where f is some function parameterised by w. Since the function f(x)
represents a probability, f(x) must be bounded between 0 and 1.

In previous chapters we have used class conditional density estimation and
Bayes rule to form a classifier p(c|x) ∝ p(x|c)p(c). Here, we take the direct
approach and postulate a model explicitly for p(c|x). There are advantages
and disadvantages in both of these approaches – my personal favourite is to
try the indirect approach more often than the direct approach.

Logistic Sigmoid Function

One of the simplest choices of function is the sigmoid function, f(x) =
1/(1 + exp(−x)), which is plotted in fig(2). What about the argument of

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

si
gm

a(
x)

Figure 2: The logistic sigmoid function σ(x) = 1/(1 + e−x).

3

w 1 1

11
1

1

1
1

0

0

0

0

0
0

0

Figure 3: The decision boundary p(c = 1|x) = 0.5 (solid line). For two
dimensional data, the decision boundary is a line. If all the training data
for class 1 lie on one side of the line, and for class 0 on the other, the data
is said to be linearly separable.

the function f? Logistic regression corresponds to the choice

p(c = 1|x) = σ(b + xT w) (1.2)

where b is a constant scalar, and w is a constant vector. When the argument
of the sigmoid function b+xT w is above zero, the probability that the input
point x belongs to class 1 is above 0.5. The greater the argument value is,
the higher is the probability that x is in class 1 (according to our logistic
regresssion model). Similarly, the more negative is the argument, the more
likely it is that x belongs to class 0.

The hyperplane b + xT w = 0 forms the decision boundary (where p(c =Linear (Hyperplane) Decision
Boundary 1|x) = 0.5) – on the one side, examples are classified as 1’s, and on the

other, 0’s. The “bias” parameter b simply shifts the decision boundary by
a constant amount. The orientation of the decision boundary is determined
by w – indeed, w represents the normal to the hyperplane. To understand
this, consider a new point x∗ = x+w⊥, where w⊥ is a vector perpendicular
to w (wT w⊥ = 0). Then

b + wT x∗ = b + wT
(
x + w⊥)

= b + wT x + wT w⊥ = b + wT x = 0 (1.3)

Thus if x is on the decision boundary, so is x plus any vector perpendicu-
lar to w. In n dimensions, the space of vectors that are perpendicular to
w occupy an n − 1 dimensional linear subspace, in otherwords an n − 1
dimensional hyperplane. For example, if the data is two dimensional, the
decision boundary is a one dimensional hyperplane, a line. This situation is
depicted in fig(3). If all the training data for class 1 lie on one side of the
line, and for class 0 on the other, the data is said to be linearly separable.
We plot σ(b + xT w) for different values of w in fig(4) and fig(5). The deci-Classification confidence
sion boundary is at σ(x) = 0.5. Note how the classification becomes more
confident as the size of the weight vector components increases – that is, as

4

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x(1)

w(1)=7, w(2)=−3.5, b=0

x(2)

Figure 4: The logistic sigmoid function σ(x) = 1/(1 + e−x), with x =
wT x + b.

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

0

0.2

0.4

0.6

0.8

1

x(1)

w(1)=14, w(2)=−7, b=0

x(2)

Figure 5: The logistic sigmoid function σ(x) = 1/(1+e−x), with x = wT x+b
.

we move only a short distance away from the decision boundary, we predict
very confidently the class of x if the weights are large.

As we have defined it sofar, x is assigned to class 1 with some probability.The Perceptron
It is not certainly in class 1 unless p(c = 1|x) = 1, which cannot happen
unless the weights tend to infinity.

The perceptron is a historical simpler model in which x is assigned to class
1 with complete certainty if b + wT x ≥ 0, and to class 0 otherwise. Alter-
natively, we can define a new rule :

p(c = 1|x) = θ(b + xT w) (1.4)

where the “theta” function is defined as θ(x) = 1 if x ≥ 0, and θ(x) = 0 if
x < 0. Since the perceptron is just a special case (the deterministic limit) of
logistic regression, we develop here training algorithms for the more general
case.

1.1 Training

Given a data set D, how can we adjust/“learn” the weights to obtain a good
classification? Probabilistically, if we assume that each data point has been
drawn independently from the same distribution that generates the data

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0

0

0

0

1

1

1 1

1

x(1)

x(
2)

1000 iterations

Figure 6: The decision boundary p(c = 1|x) = 0.5 (solid line) and confidence
boundaries p(c = 1|x) = 0.9 and p(c = 1|x) = 0.1.

(the standard i.i.d assumption), the likelihood of the observed data is1

p(D) =
P∏

µ=1

p(cµ|xµ) =
P∏

µ=1

(p(c = 1|xµ))cµ

(1− p(c = 1|xµ))1−cµ

(1.5)

Thus the log likelihood is

L =
P∑

µ=1

cµ log p(c = 1|xµ) + (1− cµ) log (1− p(c = 1|xµ)) (1.6)

Using our assumed logistic regression model, this becomes

L(w, b) =
P∑

µ=1

cµ log σ(b + wT xµ) + (1− cµ) log
(
1− σ(b + wT xµ)

)
(1.7)

1.2 Gradient Ascent

We wish to maximise the likelihood of the observed data. To do this, we
can make use of gradient information of the likelihood, and then ascend the
likelihood.

The gradient is given by (using σ′(x) = σ(x)(1− σ(x)))

∇wL =
P∑

µ=1

(cµ − σ(xµ;w))xµ (1.8)

and the derivative with respect to the biases is

dL

db
=

P∑
µ=1

(cµ − σ(xµ;w)) (1.9)

1 Note that this is not quite the same strategy that we used in density estimation. There
we made, for each class, a model of how x is distributed. That is, given the class c,
make a model of x, p(x|c). We saw that, using Bayes rule, we can use p(x|c) to make
class predictions p(c|x). Here, however, we assume that, given x, we wish to make a
model of the class probability, p(c|x) directly. This does not require us to use Bayes
rule to make a class prediction. Which approach is best depends on the problem, but
my personal feeling is that density estimation p(x|c) is worth considering first.

6

Gradient ascent would then give

wnew = w + η∇wL (1.10)

bnew = b + ηdL/db (1.11)

where η, the learning rate is a small scalar chosen small enough to ensure
convergence of the method (a reasonable guess is to use η = 0.1). The appli-
cation of the above rule will lead to a gradual increase in the log likelihood.

Writing the above result out in full gives explicitlyBatch version

wnew = w + η

P∑
µ=1

(cµ − σ(xµ;w))xµ (1.12)

bnew = b + η

P∑
µ=1

(cµ − σ(xµ;w)) (1.13)

This is called a “batch” update since the parameters w and b are updated
only after passing through the whole (batch) of training data – see the
MATLAB code below which implements the batch version (note that this is
not written optimally to improve readability). We use a stopping criterion
so that if the gradient of the objective function (the log likelihood) becomes
quite small, we are close to the optimum (where the gradient will be zero),
and we stop updating the weights.

An alternative that is often preferred to Batch updating, is to update theOnline version
parameters after each training example has been considered:

wnew = w +
η

P
(cµ − σ(xµ;w))xµ (1.14)

bnew = b +
η

P
(cµ − σ(xµ;w)) (1.15)

These rules introduce a natural source of stochastic (random) type behaviour
in the updates, and can be useful in avoiding local minima. However, as we
shall see below, the error surface for logistic regression is bowl shaped, and
hence there are no local minima. However, it is useful to bear in mind the
online procedure for other optimisation problems with local minima.

7

% Learning Logistic Linear Regression Using Gradient Ascent (BATCH VERSION)

n0 = 16; x0 = randn(2,n0) + repmat([1 -1]’,1,n0); % training data for class 0

n1 = 11; x1 = randn(2,n1) + repmat([-1 1]’,1,n1); % training data for class 1

eta = 0.1; % learning rate

w = [0 0]’; b = 0; % initial guess about the parameters

it = 0; itmax = 1000; % maximum number of iterations

gb = 1; gw = zeros(size(w)); % set gradients initally to ensure at least update

while sum(abs(gw)) + abs(gb) > 0.1 % continue whilst gradient is large

it = it + 1; % increment the number of updates carried out

gb = 0; gw = 0*gw; % reset gradients to zero

for d = 1:n1 % cycle through the class 1 data

c = 1 - 1/(1+exp(-(b+w’*x1(:,d))));

gb = gb + c;

gw = gw + c*x1(:,d);

end

for d = 1:n0 % cycle through the class 0 data

c = 0 - 1/(1+exp(-(b+w’*x0(:,d))));

gb = gb + c;

gw = gw + c*x0(:,d);

end

w = w + eta*gw; % update the weight vector

b = b + eta*gb; % update the bias scalar

if it > itmax; break; end

end

% calculate the probabilities p(c=1|x) for the training data :

disp(’p(c=1|x) for class 1 training data : ’);

1./(1+exp(-(repmat(b,1,n1)+w’*x1)))

disp(’p(c=1|x) for class 0 training data : ’);

1./(1+exp(-(repmat(b,1,n0)+w’*x0)))

One important point about the training is that, provided the data is linearly
separable, the weights will continue to increase, and the classifications will
become extreme. This may be an undesirable situation in case some of the
training data has been mislabelled, or a test point needs to be classified –
it is rare that we could be absolutely sure that a test point belongs to a
particular class. For non-linearly separable data, the predictions will be less
certain, as reflected in a broad confidence interval – see fig(7).

The error surface is
bowl-shaped The Hessian of the log likelihood is

Hij ≡ ∂2H

∂wiwj
= −

∑

i,j,µ

xµ
i xµ

j σµ(1− σµ) (1.16)

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0

0

0

0

1

1

1

1

1

x(1)

x(
2)

10000 iterations

Figure 7: The decision boundary p(c = 1|x) = 0.5 (solid line) and confidence
boundaries p(c = 1|x) = 0.9 and p(c = 1|x) = 0.1 for non-linearly separable
data. Note how the confidence interval remains broad.

This is negative definite since

∑

ij

wiHijwj = −
∑

i,j,µ

wix
µ
i wjx

µ
j σµ(1− σµ) = −

(∑

i

wix
µ
i

)2

σµ(1− σµ)

(1.17)
This means that the error surface has a bowl shape, and gradient ascent is
guaranteed to find the best solution, provided that the learning rate η is
small enough.

One can show that, provided that the data is linearly separable, the abovePerceptron Convergence
Theorem procedure used in an online fashion for the perceptron (replacing σ(x) with

θ(x)) converges in a finite number of steps. The details of this proof are
not important for this course, but the interested reader may consult Neural
Networks for Pattern Recognition, by Chris Bishop. Note that the online
version will not converge if the data is not linearly separable. The batch
version will converge (provided that the learning rate η is small) since the
error surface is bowl shaped.

1.3 Avoiding Overconfident Classification

We saw that in the case that data is linearly separable, the weights will tend
to increase indefinitely (unless we use some stopping criterion). One way
to avoid this is to penalise weights that get too large. This can be done by
adding a penalty term to the objective function L(θ) where θ is a vector of
all the parameters, θ = (w, b),

L′(θ) = L(θ)− αθT θ. (1.18)

The scalar constant α > 0 encourages smaller values of θ (remember that
we wish to maximise the log likelihood). How do we choose an appropriate
value for α? We shall return to this issue in a later chapter on generalisation.

1.4 Logistic Regression and PCA ?

In previous chapters, we have looked at first using PCA to reduce the di-
mension of the data, so that a high dimensional datapoint x is represented
by a lower dimensional vector y.

9

If e1, . . . , em are the eigenvectors with largest eigenvalues of the covariance
matrix of the high-dimensional data, then the PCA representation is

yi = (ei)T (x− c) = (ei)T x + ai (1.19)

where c is the mean of the data, and ai is a constant for each datapoint.
Using vector notation, we can write

y = ET x + a (1.20)

where E is the matrix who’s ith column is the eigenvector ei. If we were to
use logistic regression on the y, the argument of the sigmoid σ(h) would be

h = wT y + b = wT (ET x + a) + b (1.21)

= (Ew)T x + b + wT a = w̃T x + b̃ (1.22)

Hence, there is nothing to be gained by first using PCA to reduce the di-
mension of the data. Mathematically, PCA is a linear projection of the
data. The argument of the logistic function is also a linear function of the
data, and a linear function combined with another is simply another linear
function.

However, there is a subtle point here. If we use PCA first, then use logistic
regression afterwards, although overall, this is still representable as a logistic
regression problem, the problem is constrained since we have forced linear
regression to work in the subspace spanned by the PCA vectors. Consider
100 training vectors randomly positioned in a 1000 dimensional space each
with a random class 0 or 1. With very high probability, these 100 vectors
will be linearly separable. Now project these vectors onto a 10 dimensional
space: with very high probability, 100 vectors plotted in a 10 dimensional
space will not be linearly separable. Hence, arguably, we should not use
PCA first since we could potentially transform a linearly separable problem
into a non-linearly separable problem.

The XOR problem

Consider the following four training points and class labels
{([0, 0], 0), ([0, 1], 1), ([1, 0], 1), ([1, 1], 0)}.
This data represents a basic logic function, the XOR function, and is plotted
in fig(8). This function is clearly not representable by a linear decision
boundary, an observation much used in the 1960’s to discredit work using
perceptrons. To overcome this, we clearly need to look at methods with
more complex, non-linear decision boundaries – indeed, we encountered a
quadratic decision boundary in a previous chapter. Historically, another
approach was used to increase the complexity of the decision boundary, and
this helped spawn the area of neural networks, to which we will return in a
later chapter.

1.5 An Example : Classifying Handwritten Digits

If we apply logistic regression to our often used handwritten digits example,
in which there are 300 ones, and 300 sevens in the training data, and the
same number in the test data, the training data is found to be linearly sep-
arable. This may surprise you, but consider that there are 784 dimensions,

10

0

1

1

0

Figure 8: The XOR problem. This is not linearly separable.

and only 600 training points. The stopping criterion used was the same as
in the example MATLAB code in this chapter. Using the linear decision
boundary, the number of errors made on the 600 test points is 12.

1.6 Support Vector Machines

The realisation that the higher the dimension of the space is, the easier
it is to find a hyperplane that linearly separates the data, forms the ba-
sis for the Support Vector Machine method. The main idea (contrary to
PCA) is to map each vector in a much higher dimensional space, where the
data can then be linearly separated. Training points which do not affect
the decision boundary can then be discarded. We will not go into the de-
tails of how to do this in this course, but the interested reader can consult
http://www.support-vector.net. Related methods currently produce the
best performance for classifying handwritten digits – better than average
human performance.

