
Learning from Data.
Density Estimation: Gaussians

Copyright David Barber 2001-2004.
Course lecturer: Amos Storkey

a.storkey@ed.ac.uk
Course page : http://www.anc.ed.ac.uk/∼amos/lfd/

1

Learning from Data 1 : c© David Barber 2001,2002,2003,2004 2

0

x (Haggis length in cm)

p(x)sample measurements

70605040302010

Figure 1: The measured lengths of haggis. This suggests a distribution
p(x), where x is haggis length, as shown.

1 Why Density Estimation?

Consider our example of handwritten digits, where each digit is a 28 ×
28 = 784 dimensional vector x. It is intuitively clear that, once we have
seen only a few examples of someones handwriting style, we have a pretty
good idea of how they write the number seven. It maybe that they do
not always write exactly in the same way, but we would probably have
little difficulty in recognising another seven, even though every single
seven that they write is different. What this means is that we have in
some sense, captured the way that a person writes a seven – sometimes
there may be minor modifications, but we have a pretty good idea of
what effect these would have. Since every seven that someone writes
is different from the others, it makes more sense to use probabilities to
describe how probable certain types of seven are than others. That is,
we can describe how Mavis writes sevens by using a distribution p(x).
Thus, perhaps sevens that are very curly have a high probability density
value, whilst very straight sevens have a low probability. The usefulness
of probability is that it enables us to define a likelihood value for every
one of the infinite number of different sevens that Mavis could write.

Haggis are a commonly occurring wild animal in the highlands of Scot-Haggis example
land. Being relatively easy to catch (due to their unfortunate evolu-
tionary quirk of having one leg longer than another to make contouring
around hills easier) many measurements have been made over the years
of the size of adult haggis. These are plotted in Figure 1 (Actually, most
of the larger measurements are from female haggis, whilst the smaller
measurements are typically from the males). A good summary of this
data is given by using the probability density function (p.d.f) p(x) as
drawn. This gives a probability density value p(x) for any length of
haggis. The distribution must satisfy the normal rules of probability,∫

p(x)dx = 1, p(x) ≥ 0.

1.1 How do we find p(x)?

Density estimation is the “learning” of p(x) given examples of x. Usually,
in order to compress the information, we paramterise the probability den-
sity function is some way. A very important class of probability density
functions is the Gaussians which in one dimension are:

p(x|µ, σ2) =
1√

2πσ2
e−

1
2σ2 (x−µ)2 (1.1)

This distribution is the classic “bell shaped” distribution as plotted in
Figure 2. There are two parameters to this distribution

µ =
∫

xp(x)dx, the mean, and σ2 =
∫

(x− µ)2 p(x)dx, the variance.

(1.2)
If we had a set of datapoints X =

{
x1, . . . xP

}
, how could we find the

best setting of µ and σ2 to give the best fit of p(x|µ, σ2) to the data?

Learning from Data 1 : c© David Barber 2001,2002,2003,2004 3

p(x)

x

σ

µ

Figure 2: The Gaussian (or normal distribution) p(x|µ, σ2)

1.2 Maximum Likelihood fitting

If we make the standard assumptions that each observed datapoint has
been drawn independently from the same (identical) distribution, p(x|θ),
where θ are some parameters describing the distribution (such as the
mean and variance), the likelihood of generating the data X given our
p.d.f is

p(X|θ) =
P∏

i=1

p(xi|θ) (1.3)

We can thus calculate the log-likelihood of the data as

L =
P∑

i=1

log p(xi|θ) (1.4)

In the case of using a Gaussian this is

L(µ, σ2) = − 1
2σ2

P∑

i=1

(xi − µ)2 − P

2
log(2πσ2) (1.5)

We wish to find the parameters θ = (µ, σ2) that maximise the likelihood
(since the logarithm is a monotonically increasing function, this is the
same as maximising the log-likelihood). Differentiating L with respect to
µ gives, and equating to zero gives

µ =
1
P

P∑

i=1

xi (1.6)

Similarly, differentiating with respect to σ2 and equating to zero gives

σ2 =
1
P

P∑

i=1

(xi − µ)2 (1.7)

These are known as the maximum likelihood (ML) sample estimates of
the parameters. There are other ways fit distributions to data, and these
can give different parameter settings to those obtained by ML. The ML
estimator of σ2 is biased in the sense that if we were to repeat the exper-
iment many times by drawing samples from a distribution with known
mean and variance, the ML estimated variance, averaged over many tri-
als, would differ from the correct variance slightly. The unbiased esti-
mator for the variance is σ2 = 1

P−1

∑P
i=1(x

i − µ)2. This difference is
typically negligible in practice.

Learning from Data 1 : c© David Barber 2001,2002,2003,2004 4

p(x)

µ

Figure 3: Fitting a Gaussian to 2 dimensional data. We need to find an
estimate for the mean µ and covariance matrix Σ.

1.3 Fitting Gaussians – the multi-dimensional case

Given a dataset X =
{
x1, . . . ,xP

}
, we wish to fit a Gaussian to this

data. For example, how can we fit the data in Figure ??? The multi-
dimensional Gaussian is given by

p(x|µ,Σ) =
1√

det(2πΣ)
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
(1.8)

It is straightforward to show that the maximum likelihood estimates are
given by

µ =
1
P

P∑

i=1

xi (1.9)

and

Σ =
1
P

P∑

i=1

(xi − µ)(xi − µ)T (1.10)

Note that, for an n-dimensional vector x, the covariance matrix will have
n(n − 1)/2 elements. If we are to accurately estimate these parameters,
we will need a lot of data to do so. It is therefore often a good idea to
reduce the dimensionality of the data first (using principal component
analysis say), so that the number of parameters in the covariance matrix
is reduced significantly. We will learn about dimensionality reduction
techniques later.

1.4 Fitting a Gaussian to the Handwritten Digits

In some experiments later, we shall be looking at classifying the hand-
written digits one and seven. In order to reduce the dimensionality of
the data, I first use PCA on 600 training examples of our usual 28 × 28
dimensional data. This training data contains 300 ones and 300 sevens
for training. Using PCA I reduced the dimensionality down to 20. How-
ever, fitting a single Gaussian to the PCA representation of both ones
and sevens does not make much sense since we believe that there will
be two high probability regions in the 20 dimensional space, separated
by a region of low probability (that is, there are two clusters, one cor-
responding to the ones, and one corresponding to the sevens). If we do
this, fitting a single Gaussian, and then sample 100 pca vectors from this
distribution, the reconstructions are given in Figure ??. Instead, we can
fit a class conditional distribution to the PCA data. That is, we fit one
Gaussian to the PCA representation of the sevens, and another to the

Learning from Data 1 : c© David Barber 2001,2002,2003,2004 5

Figure 4: Reconstructions using 100 samples from a 20 dimensional Gaus-
sian fitted to 600 training examples of ones and sevens. Note that the
reconstructions are not particularly good examples of either ones or sev-
ens, with a lot of mixed types.

Figure 5: Reconstructions using 100 samples from a 20 dimensional Gaus-
sian fitted to 300 training examples of ones (left) and sevens (right).

PCA representation of the ones. We again sample 100 PCA representa-
tions from each of the two Gaussians, and these are plotted in Figure ??.
Note how the sample reconstructions are much more like ones and sevens
than the single global model.

1.5 Making Classifications using Class Conditional Densities

If we have data with two (or more classes), we can fit a separate Gaus-
sian to each class, p(x|class1), . . . , p(x|classK) where each Gaussian is
characterised by its mean µ(k) and covariance matrix Σ(k), k = 1, . . . ,K.
(Note that here the upper index k does not refer to taking powers – it
just indexes the class).

What we are really interested in for classification is the following: given
a new datapoint x∗ , what is p(class = k|x∗)?
To evaluate this probability, we use Bayes rule

p(A|B) =
p(B|A)p(A)

p(B)
(1.11)

In this case this gives

p(class = k|x∗) =
p(x∗|class = k)p(class = k)

p(x∗)
(1.12)

Since the denominator on the right hand sides of the above equation isDecision Boundary
independent of the class, we will classify x∗ as class k provided

p(x∗|class = k)p(class = k) > p(x∗|class = l)p(class = l) for all l 6= k
(1.13)

It is straightforward to show that the maximum likelihood estimate of
p(class = k) is simply given by the relative frequency of occurrence of
each class in the training set. For example, if there are 100 class 1 train-
ing points and 50 class 2 training points, then p(class = 1) = 2/3 and
p(class = 2) = 1/3. Normally we take logarithms of the above (this is

Learning from Data 1 : c© David Barber 2001,2002,2003,2004 6

allowed since it is a monotonic function and will not affect the decision
process). The reason for this is that this is a numerically more stable
procedure. That is, we will classify x∗ as class k provided

log p(x∗|class = k) + log p(class = k)
> log p(x∗|class = l) + log p(class = l) for all l 6= k (1.14)

In our case, using the fact that each density is Gaussian, we classify x∗

as class 1 if

− 1
2

(
x∗ − µ(1)

)T

(Σ(1))−1
(
x∗ − µ(1)

)
− 1

2
log detΣ(1) + log p(class = 1)

> −1
2

(
x∗ − µ(2)

)T

(Σ(2))−1
(
x∗ − µ(2)

)
− 1

2
log detΣ(2) + log p(class = 2) (1.15)

An example is given in Figure ?? where two dimensional data of two
different classes is plotted. The classification was produced using the
code below.

% Demo for fitting Gaussians and using Bayes to classify : 2 classes

% generate some fake training data for class 1 :

X1 = randn(2,10);

% generate some fake training data for class 2 :

X2 = randn(2,15) + repmat(3*ones(2,1),1,15);

% fit a Gaussian to data X1 :

m1 = mean(X1’)’; S1=cov(X1’); invS1 = inv(S1);

logdetS1=trace(logm(S1));

p1 = size(X1,2)/(size(X1,2)+size(X2,2)); % prior

% fit a Gaussian to data X2 :

m2 = mean(X2’)’; S2=cov(X2’); invS2 = inv(S2);

logdetS2=trace(logm(S2));

p2 = 1-p1; % prior

Xnew =2*randn(2,50)+ 2*repmat(ones(2,1),1,50);; % some test points

% calculate the decisions :

d1=(Xnew-repmat(m1,1,size(Xnew,2)));d2=(Xnew-repmat(m2,1,size(Xnew,2)));

for i = 1 : size(Xnew,2)

if d2(:,i)’*invS2*d2(:,i)+logdetS2 -2*log(p2) > d1(:,i)’*invS1*d1(:,i)+logdetS1-2*log(p1)

class(1,i)=1;

else

class(1,i)=2;

end

end

% plot a few things :

plot(X1(1,:),X1(2,:),’bx’,’markersize’,10,’linewidth’,2); hold on; % class 1;

plot(X2(1,:),X2(2,:),’ro’,’markersize’,10,’linewidth’,2); % class 2;

plot(Xnew(1,find(class==1)),Xnew(2,find(class==1)),’bx’); % class 1;

plot(Xnew(1,find(class==2)),Xnew(2,find(class==2)),’ro’); hold off % class 2;

The decision boundary is therefore quadratic – in a later chapter we shall
encounter simpler, linear decision boundaries. The decision boundary
becomes linear (a straight line or hyperplane) in the case that the two
class covariances are equal.

Learning from Data 1 : c© David Barber 2001,2002,2003,2004 7

−3 −2 −1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

5

6

7

Figure 6: Classification using two classes. The large symbols are the
training data. The small symbols are the positions of the test data and
they are given the symbol according to the Bayes decision rule.

An important point to stress though is that we no longer need to store
the dataset to make our decisions – we just can use the rule above, result-
ing in a much faster decision rule than that used, for example, in nearest
neighbour classification. It is usually a good idea to calculate and store
the inverse matrices offline, as in the code above, so that, during clas-
sification we do not need to keep inverting the matrices. (However, if
the data is very high dimensional, there may are better ways to calculate
the decision boundary without computing the inverse of the covariance
matrices.)

If the data is very high dimensional (say above 1000) then calculatingHigh dimensional Data
log det Σ is numerically very difficult (since det is the product of the eigen-
values so that under/overflow problems can occur). A numerically more
stable way to do this is to use the identity trace log M ≡ log detM where
log M is the matrix logarithm (not the element-wise logarithm). Thus, in
MATLAB, one can replace log(det(Sigma)) with trace(logm(Sigma)).

1.6 Making Classifications using Class Conditional Densities

In the above sections, we fitted two probability distributions to data,
p(y|digit = 1) and p(y|digit = 7) where y are the PCA representations
of the data.

What we are really interested in for classification is the following: given a
new y∗ (the PCA representation of a new test point x∗), what is p(digit =
1|y∗)?
To evaluate this probability, we use Bayes rule

p(digit = 1|y∗) =
p(y∗|digit = 1)p(digit = 1)

p(y∗)
(1.16)

Similarly,

p(digit = 7|y∗) =
p(y∗|digit = 7)p(digit = 7)

p(y∗)
(1.17)

Since the denominators on the right hand sides of the above two equations
are equal, we will classify y∗ as a one provided

p(y∗|digit = 1)p(digit = 1) > p(y∗|digit = 7)p(digit = 7) (1.18)

In our case, we have Gaussians modelling the distributions p(y∗|digit =
1) and p(y∗|digit = 7). The values p(digit = 1) and p(digit = 7) are

Learning from Data 1 : c© David Barber 2001,2002,2003,2004 8

both 0.5 since there are an equal number of training examples of ones
and sevens. Thus, in our case, the decision is that y∗ is a one provided

log p(y∗|digit = 1) > log p(y∗|digit = 7) (1.19)

That is,

− 1
2

(
y∗ − µ(1)

)T

(Σ(1))−1
(
y∗ − µ(1)

)
− 1

2
log detΣ(1)

> −1
2

(
y∗ − µ(7)

)T

(Σ(7))−1
(
y∗ − µ(7)

)
− 1

2
log detΣ(7) (1.20)

Using the above decision method on the 600 test points gives an error
on only 10 examples. Note that this is therefore about the same as the
nearest neighbour method (there we used 50 components and had an
error of 18), if not a little better.

As opposed to the nearest neighbour method, we no longer need to store
the dataset to make our decisions – we just can use the rule above where
we only need to store the various means and covariances and prior pa-
rameters, resulting in a much more efficient and faster decision rule.

