Learning from Data 1, Tutorial Sheet for week 4

School of Informatics, University of Edinburgh
Instructor: Dr David Barber

The Gaussian distribution in one dimension is defined as

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

and satisfies $\int_{-\infty}^{\infty} p(x) d x=1$.

1. Show that $\int_{-\infty}^{\infty} x p(x) d x=\mu$.
2. Show that $\int_{-\infty}^{\infty}(x-\mu)^{2} p(x) d x=\sigma^{2}$.
3. Consider data $x^{i}, i=1, \ldots, P$. Show that the Maximum Likelihood estimator of μ is $\hat{\mu}=\frac{1}{P} \sum_{i=1}^{P} x^{i}$ and that the ML estimate of σ^{2} is $\hat{\sigma^{2}}=\frac{1}{P} \sum_{i=1}^{P}\left(x^{i}-\mu\right)^{2}$
4. A training set consists of one dimensional examples from two classes. The training examples from class 1 are $\{0.5,0.1,0.2,0.4,0.3,0.2,0.2,0.1,0.35,0.25\}$ and from class 2 are $\{0.9,0.8,0.75,1.0\}$. Fit a (one dimensional) Gaussian using Maximum Likelihood to each of these two classes. Also estimate the class probabilities p_{1} and p_{2} using Maximum Likelihood. What is the probability that the test point $x=0.6$ belongs to class 1 ?
5. Given the distributions $p(x \mid$ class 1$)=N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $p(x \mid$ class 2$)=N\left(\mu_{2}, \sigma_{2}^{2}\right)$, with corresponding prior occurrence of classes p_{1} and $p_{2}\left(p_{1}+p_{2}=1\right)$, calculate the decision boundary explicitly as a function of $\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, p_{1}, p_{2}$. How many solutions are there to the decision boundary, and are they all reasonable?
