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The Gaussian distribution in one dimension is defined as

p(x) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

and satisfies
∫∞
−∞ p(x)dx = 1.

1. Show that
∫∞
−∞ xp(x)dx = µ.

2. Show that
∫∞
−∞(x− µ)2p(x)dx = σ2.

3. Consider data xi, i = 1, . . . , P . Show that the Maximum Likelihood estimator of µ is
µ̂ = 1

P

∑P
i=1 xi and that the ML estimate of σ2 is σ̂2 = 1

P

∑P
i=1(x

i − µ)2

4. A training set consists of one dimensional examples from two classes. The training
examples from class 1 are {0.5, 0.1, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.35, 0.25} and from class 2
are {0.9, 0.8, 0.75, 1.0}. Fit a (one dimensional) Gaussian using Maximum Likelihood to
each of these two classes. Also estimate the class probabilities p1 and p2 using Maximum
Likelihood. What is the probability that the test point x = 0.6 belongs to class 1?

5. Given the distributions p(x|class1) = N(µ1, σ
2
1) and p(x|class2) = N(µ2, σ

2
2), with

corresponding prior occurrence of classes p1 and p2 (p1 + p2 = 1), calculate the decision
boundary explicitly as a function of µ1, µ2, σ

2
1, σ

2
2, p1, p2. How many solutions are there to

the decision boundary, and are they all reasonable?
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