[] School of _ e
- informatics

Corrected Version
e Reasoning Maintenance

e Doyle's Truth Maintenance

Alan Smaill KRE 111 Feb 14th 2006

° School of _e
= informatics

A quick fix
We can tag any deduced statement with a time tag (e.g. a sequence number).

If a statement deduced at time T is invalidated, for whatever reason, then throw
it away, and all subsequent reasoning: go back to time 7' — 1 and redo as much
as goes through of the previous reasoning.

This is wasteful (but may be fine depending on the speed of the machines, the
size of the KB, and the complexity of the reasoning required).

Example

Time T: add "earth is flat”
Time T+1: add "Edinburgh is the capital of Scotland”
Time T+2: contradict "earth is flat”

So throw away second statement unnecessarily!

Alan Smaill KRE 111 Feb 14th 2006

[School of _e
= informatics

Integrating new information

We have already looked at the problem of keeping track of a dynamic (i.e.
changing) KB, when new information is a candidate for being added to the KB.

Although we talk about “Knowledge Bases”, in practice there are many
assumptions and guesses included in a KB, many of which might be wrong,
casting doubt on conclusions we get from the KB. If we are using a
non-monotonic reasoning engine (e.g. the CWA is involved), then adding new
information can invalidate earlier information, even though the KB remains
consistent.

How can we keep track of these dependencies?

Alan Smaill KRE 111 Feb 14th 2006

[School of _ e
- informatics

A better approach
In a truth (or reasoning) system (TMS/RMS):

e Dependencies are represented by a set of nodes with justifications;
e Each node is labelled with a statement in, or deduced from, the KB;

e Each node has zero or more justifications, i.e. records of how the statement
came to be believed.

There should be only one node for any given statement; thus we build a system
of nodes and interlocking justifications.

We can mark some initial statements as facts and others as assumptions — just
means that we look among latter for problem cases.

Alan Smaill KRE 111 Feb 14th 2006

° School of _e
= informatics

Two versions of TMS
Doyle’s TMS

Suppose our reasoning engine (separate from the TMS) signals that the current
information is contradictory (e.g. logically inconsistent). Then something must
change in the KB.

e The TMS gives us a choice of which bits of the network might be to blame.
e TMS (or user) picks one of the possibilities.

e TMS updates the network by removing justifications — but keeps a record to
allow these to be put back if the blame is shifted later on.

Alan Smaill KRE 111 Feb 14th 2006

School of

® .
= iInformatics

Doyle’'s TMS
e Justifications are marked valid or invalid;

e Nodes are marked IN if they have 1 or more valid justifications, otherwise
marked OUT;

Practically, can omit OUT nodes after some time to save space.
Sometimes OUT nodes are important, because a justification for a node being
IN may be that another node is OUT (as in CWA).

Alan Smaill KRE 111 Feb 14th 2006

° School of _e
= informatics

de Kleer's version
Here the TMS works harder

e build up all possible justification patterns by forward chaining
e record for a node all the possible justifications
e when there is inconsistency, get choice of assumptions to blame, as before

e allows efficient propagation of new valid justifications.

Today, we look at Doyle's TMS.

Alan Smaill KRE 111 Feb 14th 2006

[School of _ e
= informatics

Kinds of Justifications
In this sort of TMS:

support list Justify by SL(INlist,O0UT1list):
this says that the statement associated with the node is justified provided all
the nodes in the IN1list are IN, and all the nodes in the OUT1list are OUT.

conditional proof Justify by CP(node, IN1ist, OUT1list):
this says that the mentioned node is IN, provided all the nodes in the INlist
are IN, and all the nodes in the 0UT1ist are OUT.

The IN/OUT here tells us whether node’s statement is currently believed to be
true.

Alan Smaill KRE 111 Feb 14th 2006

° School of _e
s informatics

e A statement can be made a fact by attaching the justification SL({[], []) which
means it is always IN.

e Nodes with non-empty OUTlists are called assumptions — they can be
invalidated.

o Conditional proof justifications are useful in supporting deduced rules:

Node | Statement Justifications
ni A 7
ns A— B CP(nz, mi,[])
ns | ANC — B | CP(ny, [n1,n4],[])

Alan Smaill KRE 111 Feb 14th 2006

(] School of _ e
- informatics

Locking for inconsistency

Note that checking for contradiction (inconsistency) is the job of the reasoning
engine, not the TMS.

However, the TMS can help the reasoning system in adapting the KB because it
has a record of the dependencies in the reasoning patterns.

Next, look at the algorithm used by this form of TMS.

Alan Smaill KRE 111 Feb 14th 2006

School of

° °
= Informatics

Using these

A TMS is not a reasoning system — it depends on a reasoning system to to
inference.

This supports a form of default reasoning. Suppose that ni, ng, ng correspond to
bird(tweety), ostrich(tweety), fly(tweety). Then justify ns with

SL([n1], [na])

Then the justification will be applicable only if ng is OUT, i.e. there is no
current justification for ns.

If there are many anomalous cases, we can collect them together with a new
node, justified by each particular case.

Alan Smaill KRE 111 Feb 14th 2006

[School of _ e
= informatics

TMS algorithm

Suppose that node N is currently IN and causing problems (e.g. it is a
contradiction).

e Trace the dependencies backward from N (which is currently IN and causing
trouble) to find the set of assumptions that support it. Find the maximal
ones — those that do not support other assumptions. Suppose that these are
nodes Aj,..., A,.

e Create a new “No Good” node NG to represent that the A; together are
cause a problem; label with “not (4; A--- A A,)", and give it justification

CP(N, [A,...,Ad,[])

Alan Smaill KRE 111 Feb 14th 2006

[] School of _ e
= informatics

Algorithm ctd

e Pick one of the As at random, say A;. We want to change things so that N
becomes out.

e A; has a valid justification with a non-empty OUTlist (since it is an
assumption). Find the nodes Dy, ..., Dy which are currently OUT, and which
would make A; OUT if any of the Ds became IN. Pick one, say D;.

e Give D; a new justification, so it becomes IN, e.g.

SL([NG, Ay, ..., Aq],[D1,...,Dj=1,Dj41,...,Dx])

Now, D; is IN, so A; is OUT, so N is OUT.

Alan Smaill KRE 111 Feb 14th 2006

(] School of _ e
== iInformatics

Example

Suppose we have time-tabling problem, given the following:

Node | Statement Justifications
ny | time = 10am | SL([], [n2])
ng | time # 10am | ...
ng | place = FH SL([], [na])
on place = AT

The current IN nodes are { ny,ng }. Suppose that the reasoning system spots a
problem:

| ns | the snag | SL([ny,ns],[])]

i.e. the combination of the currently IN nodes leads to something not possible.
The IN set is now { ny,n3,ns }.

Alan Smaill KRE 111 Feb 14th 2006

[School of _e
— informatics

Note that:

e the node NG records the contradiction that we got into, and it remains in
the TMS to watch out for the problem.

e If any D comes IN, or A goes out, then D; will be OUT, so we can later
overrule the arbitrary choices made here.

Alan Smaill KRE 111 Feb 14th 2006

[School of _ e
== informatics

Example ctd

The maximal assumptions for ns are ny and ns.
We now introduce the “no good” node:

| ne | not ny and ng | CP(ns, [n1,ns],[]) |

Pick on ng3: it has one OUT node n4, so we bring it IN, by adding the
justification:

| n4 | place = AT | SL([ne,n4],[]) |

The IN set is now { nj,n4,n6 } and the problem is cured.

Alan Smaill KRE 111 Feb 14th 2006

[] School of _ e
= informatics

Choosing the culprit

Rather than picking nodes at random, the reasoning system may help the TMS
to make a more rational choice. We will look at some belief revision ideas later
to see examples of this, in a KB extended with preferences between statements
saying which should be given priority during reasoning maintenance.

There can be problems of looping here — making one node OUT can result in it
coming back IN via a different justification, and vice versa. (This is like the
problem of making sense of logic programs that use negation outside the
situation prescribed by the CWA.)

Alan Smaill KRE 111 Feb 14th 2006

[School of _e
= informatics

Summary
We looked at the general problem of Reasoning Maintenance.

In particular, Doyle's TMS:

e Nodes IN/OUT, with justifications
e Support list and Conditional justifications
e Algorithm to repair problematic KB

e Add record of problem situation

Alan Smaill KRE 111 Feb 14th 2006

