[] School of _ e
- informatics

Today

e Meta-Language

e Meta-Interpreters

Alan Smaill KRE 27 Jan 2006

° School of _e
= informatics

Meta-language

Thus we get two languages, one describing the other. We say that the
meta-language is used to talk about the object language.

Examples

English as meta-language, with French as object language:
The word “poisson” is a masculine noun.
English as meta-language, with English as object-language:

It is hard to understand “Everything | say is false”.

Alan Smaill KRE 27 Jan 2006

[School of _e
= informatics

Recall
The Reflection Hypothesis:

give the system a representation of itself to manipulate.

,,,,,,,,,,,,,,,,,,,,,,,,,,,

Language [rree Language E haREEE LT Object Domain
Represents | ‘ ! Represents

Induces by computation/deduction

‘ ; ‘
v ' v
‘

Behaviour | Behaviour
|

Alan Smaill KRE 27 Jan 2006

[School of _ e
- informatics

Examples ctd

Prolog contains a mixture of object-level and meta-level statements.

father(a,b). object-level
functor(father(a,b),father,2). meta-level
var (X) . meta-level

It is better to keep these uses distinct.

Notice that var/1 does not function according to Prolog’s declarative semantics:

Alan Smaill KRE 27 Jan 2006

° School of _e
= informatics

Compare:

| 7- var(X),X=2.
X=277

yes
| 7- X=2, var(X).

no

(remember, Prolog comma is just conjunction.)

Alan Smaill KRE 27 Jan 2006

(] School of _ e
= informatics

Prolog in Prolog
Take the program:
father(a,b).

ancestor(X,Y) :- father(X,Y).
ancestor(X,Y) :- father(X,Z), ancestor(Z,Y).

We can write a description of Prolog programs in Prolog:

clause(father(a,b), true).
clause(ancestor(X,Y), father(X,Y)).
clause(ancestor(X,Y),

(father(X,Z), ancestor(Z,Y))).

Alan Smaill KRE 27 Jan 2006

° School of _e
= informatics

Declarative Reading of Prolog
The clauses of the program correspond to universally quantified statements.

Prolog: member (X, [HIT]) :- member(X,T).
logic: Vx Vh Vt member(z,t) —
member(z, [h|t])

A query corresponds to an existentially quantified statement:

Prolog: ?- member(X,[0,11).
logic: 3z member(z, [0,1])

Success with X=0 means that member(0, [0, 1]) follows logically from the
program.

Alan Smaill KRE 27 Jan 2006

° School of _ e
= informatics

Meta-level Interpreter

We can also represent Prolog inference in Prolog.
When is a query solved?

solve(true).
solve((A,B)) :- solve(A), solve(B).
solve(A) :- clause(A,B), solve(B).

(This is known as the vanilla interpreter.)

Alan Smaill KRE 27 Jan 2006

° School of _e
s informatics

To query, use
?- solve(ancestor(X, b)).

As it stands, this mimics the Prolog interpreter, less efficiently. But we can use
the idea to be more imaginative.

For example, we can describe other inference rules in Prolog.

Alan Smaill KRE 27 Jan 2006

(] School of _ e
- informatics

A complete inference procedure
NB: Normal Prolog inference is incomplete.

% iterative deepening metainterpreter.
idsolve(Query) :- idsolve(Query,0).
idsolve(Query,N) :-
solvel (Query/0,N),
write(’Solution found at depth ’),
write(N).
idsolve(Query,N) :-
M is N+1,
write(’Searching at depth),
write(M),nl, idsolve(Query,M).

% solvel(+,+) unfolds clauses while checking
% that Max as second argument is not exceeded.

Alan Smaill KRE 27 Jan 2006

Other inference procedures
We can also describe a different inference procedure:

% work with list of goals: e.g., sort to
% look at clauses with fewer vars first.
% rule/2 is syntactic variant of clause/2.

solve_srt(Goal) :-
solve_srt_list([Goal 1).
solve_srt_list([]) :- !.
solve_srt_list(Goals) :-
sort_goals(Goals, [First|Rest]),
rule(First, Body),
append(Body, Rest, NewGoals),
solve_srt_list(NewGoals).

sort_goals(X, Y) :-

School of

° °
= Informatics

Alan Smaill KRE 27 Jan 2006
° School of _e
= Informatics
solvel(true/_, _) := !.
solvel((A/M, B), Max) :-
solvel(A/M, Max),
solvel(B, Max).
solvel(A/M, Max) :-
M =< Max, N is M+1,
clause(A, B), postlist(B, N, BB),
solvel(BB, Max).
% postlist(+,+,7) distributes depth label to
% elements of list
Alan Smaill KRE 27 Jan 2006

[] School of _ e
= informatics

Control knowledge
This gives us a way to give control information in a more declarative way, in a

meta-program.

e Specify the object-level knowledge
(pure Prolog)

e Specify how to use the knowledge
(meta-interpreter)

Given special characteristics, this can be a more efficient way of dealing with
domain knowledge than using the standard interpreter.

Alan Smaill KRE 27 Jan 2006

(] School of _ e
== iInformatics

Example

Suppose that for every formula F' in the language, there is a constant "F'™;
we have some predicate (call it true) such that

true("F™) < F

for every formula F;
suppose also we have a diagonalisation property (this is a fairly weak condition.)

For any formula G(x) with one free variable, there is a formula F' such that

G(F") & F.

Then our logic is inconsistent!

Alan Smaill KRE 27 Jan 2006

[School of _e
— informatics

Other meta-programs

anything that treats a program as data — compiler, debugger, . . .

Take care when combining object-level and meta-level statements in a single
language.

It's very easy to get an inconsistent theory.

Alan Smaill KRE 27 Jan 2006

[School of _ e
== informatics

We can find the inconsistency by diagonalising —true(z).

There is a formula F' such that

—true("F) < F.

By the definition of the truth predicate,
true("F) < F
so

—true("F ™) <> true("F7)

— a contradiction.

Alan Smaill KRE 27 Jan 2006

[] School of _ e
= informatics

A Choice

We can decide to use
1. Separate levels (a meta-logic and an object logic)
2. A single reasoning system (reflection)

In practice, we can have two levels, with connections between them.

Alan Smaill KRE 27 Jan 2006

(] School of _ e
= Informatics

What's the point?
In Meta, we can state not only Prov("F™) but, eg,

Fu Vo Yy Prov(Imp(z,y)) —
Prov(Neg(y)) — Prov(Neg(zx))

This extends the reasoning powers of the system — it's a derived inference rule:

P—qQ -Q
-P

Alan Smaill KRE 27 Jan 2006

School of

° °
= Informatics

Example

Object: pred calculus description
(say for arithmetic)

Meta: says what object formulas
are provable

So we get:

Object: +Fo0#1
Meta: Fjp Prov(T0#17)

To go between, we need “bridging” rules:
e if ko F then by Prov("F7)

o if Fas Prov("F7) then o F

Alan Smaill KRE 27 Jan 2006

[School of _ e
=5 informatics

Example

Take two arithmetic expressions that just use + and vars, eg

(x+@y+2)+...=((a+b)+c)+...

The statement is true just if the lists

[,9,2,...], la,b,c,...]

are permutations.
This is a meta-level statement.

We can implement the meta-level algorithm; to show it is correct, we need to
use the bridge rules between the object theory and the meta-theory.

Alan Smaill KRE 27 Jan 2006

[] School of _ e
= informatics

Summary
e Object and meta-language
e Meta-interpreters

e Two levels or combined
— to specialise search
— to extend reasoning ability

Alan Smaill KRE 27 Jan 2006

