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e Meta-Language

e Meta-Interpreters
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Meta-language

Thus we get two languages, one describing the other. We say that the
meta-language is used to talk about the object language.

Examples

English as meta-language, with French as object language:
The word “poisson” is a masculine noun.
English as meta-language, with English as object-language:

It is hard to understand “Everything | say is false”.
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Recall
The Reflection Hypothesis:

give the system a representation of itself to manipulate.
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Examples ctd

Prolog contains a mixture of object-level and meta-level statements.

father(a,b). object-level
functor(father(a,b),father,2). meta-level
var (X) . meta-level

It is better to keep these uses distinct.

Notice that var/1 does not function according to Prolog’s declarative semantics:
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Compare:

| 7- var(X),X=2.
X=277

yes
| 7- X=2, var(X).

no

(remember, Prolog comma is just conjunction.)
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Prolog in Prolog
Take the program:
father(a,b).

ancestor(X,Y) :- father(X,Y).
ancestor(X,Y) :- father(X,Z), ancestor(Z,Y).

We can write a description of Prolog programs in Prolog:

clause( father(a,b), true ).
clause( ancestor(X,Y), father(X,Y) ).
clause( ancestor(X,Y),

(father(X,Z), ancestor(Z,Y)) ).
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Declarative Reading of Prolog
The clauses of the program correspond to universally quantified statements.

Prolog: member (X, [HIT]) :- member(X,T).
logic:  Vx Vh Vt member(z,t) —
member(z, [h|t])

A query corresponds to an existentially quantified statement:

Prolog: ?- member(X,[0,11).
logic: 3z member(z, [0,1])

Success with X=0 means that member(0, [0, 1]) follows logically from the
program.
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Meta-level Interpreter

We can also represent Prolog inference in Prolog.
When is a query solved?

solve( true ).
solve( (A,B) ) :- solve(A), solve(B).
solve( A ) :- clause(A,B), solve(B).

(This is known as the vanilla interpreter.)
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To query, use
?- solve( ancestor(X, b) ).

As it stands, this mimics the Prolog interpreter, less efficiently. But we can use
the idea to be more imaginative.

For example, we can describe other inference rules in Prolog.
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A complete inference procedure
NB: Normal Prolog inference is incomplete.

% iterative deepening metainterpreter.
idsolve(Query) :- idsolve(Query,0).
idsolve(Query,N) :-
solvel (Query/0,N),
write(’Solution found at depth ’),
write(N).
idsolve(Query,N) :-
M is N+1,
write(’Searching at depth ),
write(M),nl, idsolve(Query,M).

% solvel(+,+) unfolds clauses while checking
% that Max as second argument is not exceeded.
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Other inference procedures
We can also describe a different inference procedure:

% work with list of goals: e.g., sort to
% look at clauses with fewer vars first.
% rule/2 is syntactic variant of clause/2.

solve_srt( Goal ) :-
solve_srt_list( [ Goal 1 ).
solve_srt_list( [] ) :- !.
solve_srt_list( Goals ) :-
sort_goals( Goals, [First|Rest] ),
rule( First, Body ),
append( Body, Rest, NewGoals ),
solve_srt_list( NewGoals ).

sort_goals( X, Y ) :- ....
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solvel(true/_, _ ) := !.
solvel( (A/M, B ), Max ) :-
solvel( A/M, Max ),
solvel( B, Max ).
solvel( A/M, Max ) :-
M =< Max, N is M+1,
clause( A, B), postlist(B, N, BB),
solvel( BB, Max ).
% postlist(+,+,7) distributes depth label to
% elements of list
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Control knowledge
This gives us a way to give control information in a more declarative way, in a

meta-program.

e Specify the object-level knowledge
(pure Prolog)

e Specify how to use the knowledge
(meta-interpreter)

Given special characteristics, this can be a more efficient way of dealing with
domain knowledge than using the standard interpreter.
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Example

Suppose that for every formula F' in the language, there is a constant "F'™;
we have some predicate (call it true) such that

true("F™) < F

for every formula F;
suppose also we have a diagonalisation property (this is a fairly weak condition.)

For any formula G(x) with one free variable, there is a formula F' such that

G(F") & F.

Then our logic is inconsistent!
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Other meta-programs

anything that treats a program as data — compiler, debugger, . . .

Take care when combining object-level and meta-level statements in a single
language.

It's very easy to get an inconsistent theory.
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We can find the inconsistency by diagonalising —true(z).

There is a formula F' such that

—true("F ) < F.

By the definition of the truth predicate,
true("F) < F
so

—true("F ™) <> true("F7)

— a contradiction.
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A Choice

We can decide to use
1. Separate levels (a meta-logic and an object logic)
2. A single reasoning system (reflection)

In practice, we can have two levels, with connections between them.

Alan Smaill KRE 27 Jan 2006

(] School of _ e
= Informatics

What's the point?
In Meta, we can state not only Prov("F™) but, eg,

Fu Vo Yy Prov(Imp(z,y)) —
Prov(Neg(y)) — Prov(Neg(zx))

This extends the reasoning powers of the system — it's a derived inference rule:

P—qQ -Q
-P
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Example

Object: pred calculus description
(say for arithmetic)

Meta: says what object formulas
are provable

So we get:

Object: +Fo0#1
Meta: Fjp Prov(T0#17)

To go between, we need “bridging” rules:
e if ko F then by Prov("F7)

o if Fas Prov("F7) then o F
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Example

Take two arithmetic expressions that just use + and vars, eg

(x+@y+2)+...=((a+b)+c)+...

The statement is true just if the lists

[,9,2,...], la,b,c,...]

are permutations.
This is a meta-level statement.

We can implement the meta-level algorithm; to show it is correct, we need to
use the bridge rules between the object theory and the meta-theory.
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Summary
e Object and meta-language
e Meta-interpreters

e Two levels or combined
— to specialise search
— to extend reasoning ability
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