[] School of _ e
- informatics

Today

Modelling time

Many beliefs depend on time — for example “it's raining” implicitly refers to a
present time.

So, sometimes the same agent or person will accept the statement sometimes,
reject it at others, and sometimes not be in a position to decide.

How can we represent such beliefs?

Alan Smaill KRE Jan 23rd, 2004

° School of _e
= informatics

Linear discrete unbounded time

The model we take for time here is that the time points are related by an order
(“before”) with the following properties:

e linear: the points succeed each other along a single line;

e discrete. for any point, there is a later point with no intermediate point
between these two points;

e unbounded: there is no last point.

We can take the integers, or time given as a sequence of integers representing
month /day/year/hours/minutes/seconds.

In both cases it's important to be able to compute the later relation, given two
time points.

Alan Smaill KRE Jan 23rd, 2004

[School of _e
= informatics

Belief statements

What is a suitable data structure to hold an agent’s belief? Here is one way to
do this.

For a given time, the agent may believe a non-temporal statement is true, false,
or unknown. We assume that beliefs are persistent, i.e. in the absence of any
other information, a statement believed to be true at some time is believed to be
true at later times also.

Alan Smaill KRE Jan 23rd, 2004

[School of _ e
- informatics

An abstract data-type

We cannot take rational numbers (not discrete), or integers with some maximum
(bounded). We pass over implementational problems this raises.

We make a modular treatment of time if we do not specify the exact format, but
only what operations we require. Then we can plug in different formats if
required (e.g. include milliseconds).

Suppose we have:

add_time(Timel,Time2,Result)
less(Timel,Time2)

% both assuming same format
inRange (Timel,Time2, Test)

% is Test between 2 Times?

Alan Smaill KRE Jan 23rd, 2004

° School of _e
= informatics

Changing beliefs
Use the following form to represent beliefs about Pred:
b(A,Pred, [[Timel,t], [Time2,f], [Time3,t]])

meaning that:

agent A started to believe Predl at Timel,
believes that Predl turns false at Time2,

and is true again for all times after Time3.
Before Timel, Agentl has no belief about Predl.

assumption: we always have that the Times in increasing temporal order; the
implementation should maintain this invariant.

Alan Smaill KRE Jan 23rd, 2004

(] School of _ e
= informatics

Querying beliefs
Beliefs are added and queried with
add_belief (Agent, [Time,Belief,TV]).

believes(Agent, [Time,Pred],TV).

where TV can be given the value t or f (true or false), or return these values or
“unknown”. We do wnat to distinguish between a statement not being believed
to be true (might be unknown), and the statement being believed to be false.

Let's see what we need to support these operations. In a Prolog implementation,
we need to be concerned over the modes (instantiation patterns) that the
operations are used in.

Alan Smaill KRE Jan 23rd, 2004

School of

° °
= Informatics

General Form

In general, label the statement with a list of pairs
[T'ime, Bool]

of time (in chosen format), and Boolean t/f.

We also ensure that the times mentioned are strictly increasing through the list.
This means there is no contradiction, such as would arise with a label
[[114,t]1,[114,£]] using the integer representation.

Note that we could equally have held a whole set of separate agent beliefs, one
for each time point; this would have made computations more expensive.

Alan Smaill KRE Jan 23rd, 2004

° School of _ e
= informatics

Time operations
We have some method of accessing the “current” time.

Recall we want to add times, compare them, and see if one is in a given range.
The following modes are enough:

add_time(+Timel,+Time2,-Result)
less(+Timel,+Time2)
inRange (+Timel,+Time2,+Test)

For integers, these operations are straightforward. For
month/day/year/hours/minutes/seconds, each in positive integers, indicate via a
prioritisation, (here [2,3,1,4,5,6]), and do in terms of a hierarchy of levels.

Alan Smaill KRE Jan 23rd, 2004

° School of _e
s informatics

Belief Operations

Given such time operations, how can we implement the updating of agents’
beliefs? We think of this as changing the state of an agent. However, we also
assume the agent remembers the former beliefs. In general, this issue is known
as belief revision — how do we revise our opinions given new information?

Here we take a simple approach.

We use the Prolog assert and retract mechanism; this mimics the changing state
of the agent in the internal Prolog database. To add a belief, there are two cases.

Alan Smaill KRE Jan 23rd, 2004

(] School of _ e
- informatics

Updating Labels

We make the assumption that the only connective that can appear in a fact is
negation. Thus, if we add a belief that —raining is true at time 1137, we want
to associate false with raining at that time. We do allow function symbols and
constants.

On the other hand, if we want to query for raining at 1136, and there is no
other information, we want to getback the “don’t know" answer. We want the
same answer if we query for —raining at 1136 too.

We may also want to query if an agent does not believe some (possibly negated)
fact!

Alan Smaill KRE Jan 23rd, 2004

School of

° °
= Informatics

Belief addition

% if no current belief, add as given
add_belief (Agent, [Time,Belief ,TV]) :-
not (b(Agent,Belief,_)),
assertz(b(Agent,Belief, [[Time,TV1])).

% if some belief already about fact,

% work out new label for the fact.

% and use that

add_belief (Agent, [Time,Belief ,TV]) :-

b(Agent,Belief,01d),
add_to_belief_list(01d,Time,TV,New),
retract(b(Agent,Belief,01d)),
assertz(b(Agent,Belief ,New)).

Alan Smaill KRE Jan 23rd, 2004

[School of _ e
= informatics

Updating Labels (ctd)

Suppose that we have reduced the problem so that we have an appropriate
boolean label, and the existing label has times in order. Suppose first time in
current label is T'1 and new time is T'N.

e If T'N is less than T'1, add new pair to front;
e If T'N is same as T'1, replace first pair with new pair;

e Otherwise keep first pair as first, and call recursively.

The base case is the empty list of pairs — simply insert the new pair to make a
list with one pair.

Alan Smaill KRE Jan 23rd, 2004

[] School of _ e
= informatics

Querying beliefs
It is helpful to work out first the case where the belief being queried has no
negation.
Suppose we have the label list for a statement, and we want to see what of the
three truth values we associate with a time ¢,

Implement no_not_believes via cases here:

e when t is given
— when list is empty
— when t is not less than first label time
— otherwise

e when time ¢ is a (Prolog) variable (i.e. when we want to compute a value for
the unkown t).

Alan Smaill KRE Jan 23rd, 2004

(] School of _ e
== iInformatics

Three valued logic

The reasoning above with three truth values (true, false, unknown) has been
extensively studied. We can think of this as using extended truth tables; here for
negation we have:

t | f

flt

u|u

Can also do for other connective, e.g. conjunction:

At f u
t |t f u
f|f f f
ulu f u

Alan Smaill KRE Jan 23rd, 2004

[School of _e
— informatics

Including Negations

First, we need to consider the case where there is no belief at all about the
statement queried.

Finally, we query beliefs by looking at unnegated form, and then dealing with
negation subsequently:

believes(Agent, [Time,Belief] ,NTV) :-
remove_nots(Belief ,NewBel),
no_nots_believes(Agent, [Time,NewBel] ,TV),
add_in_nots(Belief,TV,NTV).

— beware that we have the “unknown” truth value to deal with here.

Alan Smaill KRE Jan 23rd, 2004

[School of _ e
== informatics

Prolog and negation

In implementing such queries, we have introduced explicit truth values into the
language we manipulate, rather than relying on Prolog’s own notion of success
and failure.

This is because Prolog does not distinguish between being unable to find a

derivation, and claiming that the query is false; that is, it does not distinguish
between the “false” and the “unknown” values we have above.

When we take a Prolog reponse of no. as indicating that a query is false, we are
making use of the idea of negation as failure: if a statement cannot be derived,
then it is false.

Clearly, this assumption is not always valid!

Alan Smaill KRE Jan 23rd, 2004

[] School of _ e ° School of _e
= informatics = informatics

Example Summary

In fact, in the declarative reading, a Prolog query will fail if there is no deduction
of the query from the program, read as a set of logical assertions in Horn clause
shape.

e Linear discrete time

. D .) . . e Representing changing beliefs
If some information is not present in the program, failure to find a derivation

should not let us conclude that the query is false — we just don’t have the

nformation to decide. e Adding and querying beliefs

e Prolog and negation as failure

Alan Smaill KRE Jan 23rd, 2004 Alan Smaill KRE Jan 23rd, 2004

