

Today

Modal Logics

necessity, possibility, knowledge, belief . . .

Alan Smaill KRE I3 ian 17 2006

3 informatics

An example

For example, may want to say that something is

- possibly true
- known to be true
- *believed* to be true
- •

A simple inference using this is

Necessarily, Fred is mortal. Therefore, Fred is mortal.

How can we express this in a logic? First we try a non-modal approach.

informatics

Some arguments go easily from natural language to the predicate calculus.

All men are mortal. Fred is a man. Therefore, Fred is mortal.

This corresponds to a derivation in the predicate calculus of

$$\forall x \ man(x) \rightarrow mortal(x)$$
$$man(fred)$$
$$\vdash \ mortal(fred)$$

Other notions are not so easily expressed in terms of truth. *Modal logic* allows formulas to express different *modes* of assertion, beyond just true and false.

Alan Smaill KRE I3 jan 17 2006

nformatics

Using FOL?

We could take first order logic, and add a new axiom $\forall x \ nec(x) \to x$ From this and modus ponens, it looks as though we can get from

to

BUT this clashes with our syntax: the two propositions have to be parsed as follows.

$$pred fn cst$$
 $nec(mortal(fred))$
 $mortal(fred)$
 $pred cst$

informatics

Semantics

Also, what about the meaning of the terms here? In

mortal(fred)

objects of discourse are people; in

 $nec(\ldots)$

objects of discourse are propositions (maybe formulas?).

So, though it is possible to build an inference system, it's not clear what the statements in the system *mean*.

Alan Smaill KRE I3 ian 17 2006

7 informatics

Properties of First-Order version

- Add extra axioms to whatever we already have available.
- Get a first-order theory, so we can use a standard inference engine.
- The syntax is complicated!
- Often we want to make use of the structure of a formula, even when it is mentioned, and we cannot do this in the logic.

A First-Order Formulation

Extend the syntax by adding for every formula F a new constant $\lceil F \rceil$. Now, for every formula G in the language add the axiom

$$nec(\ulcorner G \urcorner) \to G$$

For example, we get

$$nec(\lceil rich(fred) \rceil) \rightarrow rich(fred)$$

This is OK for both the syntax, and the semantics; there are distinct bits of syntax for the *use* and the *mention* of a formula.

Alan Smaill KRE I3 jan 17 2006

7 Informatics

Modal Logic

Instead of adding extra axioms, we add new logical connectives.

The standard connectives are

 \square : it is necessary that

 \diamond : it is possible that

We enlarge the syntax definition so that if F is a formula, then so is $\Box F, \Diamond F$. Many different logics of necessity have been proposed.

nf School of tics

An Inference System

We can give an axiom system by adding three axiom schemes:

$$\Box(A \to B) \to (\Box A \to \Box B) \quad Ax1$$

$$\Box A \to A \qquad \qquad Ax2$$

$$\Box A \to A \qquad Ax2 \\
\Box A \to \Box \Box A \qquad Ax3$$

and a new rule of inference (nec)

if
$$\vdash A$$
 then $\vdash \Box A$.

We can also *define* \Diamond in terms of \square by

$$\Diamond A \leftrightarrow \neg \Box \neg A$$

— so $\Diamond A$ is just a shorhand way of writing $\neg \Box \neg A$.

Alan Smaill KRE I3 jan 17 2006

11 informatics

Necessity

Necessity may be understood in several ways.

For example, in a parallel or non-deterministic system, read $\Box F$ as saying that F is true in all branches/in all cases.

Or in game playing, we can read $\Box F$ as saying that F is true, whatever move is made at this point in the game.

Derivation

A derivation in modal logic is like one in the predicate calculus with appeal to the new axioms and inference rules.

$$\begin{array}{ccc} 1 & \mathtt{p} \to (\mathtt{q} \to \mathtt{p}) & axiom \\ 2 & \Box(\mathtt{p} \to (\mathtt{q} \to \mathtt{p})) & necessitation \ 1 \\ 3 & \Box(\mathtt{p} \to (\mathtt{q} \to \mathtt{p})) \to (\Box\mathtt{p} \to \Box(\mathtt{q} \to \mathtt{p})) \\ & & axiom Ax1 \\ 4 & \Box\mathtt{p} \to \Box(\mathtt{q} \to \mathtt{p}) & modus \ ponens \ 2, 3 \end{array}$$

In the propositional case, this is decidable.

Alan Smaill KRE I3 jan 17 2006

Logic of Knowledge

Let's take $\Box F$ to mean "F is known to be true". How good is our original inference system for this reading?

Are the axioms and inference rules

- plausible? (sound)
- complete?

In terms of being known, they say:

$$\begin{aligned} & \texttt{known}(\texttt{a}) \to \texttt{a} \\ & \texttt{known}(\texttt{a}) \to \texttt{known}(\texttt{known}(\texttt{a})) \\ & \texttt{known}(\texttt{a} \to \texttt{b}) \to (\texttt{known}(\texttt{a}) \to \texttt{known}(\texttt{b})). \end{aligned}$$

Are these OK?

Notice that we don't have

$$a \rightarrow known(a)$$

What about the necessitation rule:

if
$$\vdash a$$
 then $\vdash known(a)$

This means that all logical truths are known!

It's hard to find a better formulation here, that allows use of logical inference from knowledge, without assuming that this must be exhaustive.

Completeness?

To suggest that the system is not complete, find an intuitively true statement that is not derivable.

Alan Smaill KRE I3 ian 17 2006

nf School of of of the state of

Possible axioms

$$bel(x,F) \rightarrow bel(x,bel(x,F))$$

Note that we can model inconsistent beliefs in a consistent theory.

$$bel(x, p \to q) \to bel(x, q \to p)$$

We can also express nested beliefs, eg

$$bel(x, bel(y, \neg bel(x, F)))$$

informatics

Logics of Belief

Assume that knowledge is true, justified belief.

We can build a logic by adding a two place modal connective bel such that is t is a term and F a formula, then bel(t,F) is a formula (intuitively, it expresses that "t believes that F").

Now we need appropriate axioms and inference rules.

Alan Smaill KRE I3 jan 17 2006

Introspection

Some rules that treat of reasoning about beliefs in a sequent calculus version are as follows.

introspect
$$\frac{\text{Forms} \Longrightarrow \text{bel}(X, F)}{\text{Forms} \Longrightarrow \text{bel}(X, \text{bel}(X, F))}$$

beIMP
$$\frac{\text{Forms} \Longrightarrow \text{bel}(X,F) \quad \text{Forms} \Longrightarrow \text{bel}(X,F \to G)}{\text{Forms} \Longrightarrow \text{bel}(X,G)}$$

nf School of tics

Temporal logic

For thinking about agents, we will make some use of *temporal logic*. One approach is to add connectives:

 $\Box F$ F is always true

 $\diamond F$ F is eventually true

 $\bigcirc F$ F is true at the next time point

 $F \mathbf{U} G$ F is true until G

We need some rules for reasoning with these modalities.

Alan Smaill KRE I3 ian 17 2006

19 informatics

Temporal Logic ctd

Inference Rules

- Standard propositional inference
- Necessitation:

If there is a proof of p (from no assumptions), then we can derive a proof of $\Box p$

This is the most basic temporal logic; other machinery is necessary to deal with the other connectives, and issues of discrete vs dense time.

Temporal inference

Here is an inference system for temporal logic, using the connectives above.

Possible Axioms (schemes for any matching formulas)

 $\Box(p
ightarrow q)
ightarrow (\Box p
ightarrow \Box q)$ If p always implies q,

then if p will always be the case, so will q.

 $\Diamond p \rightarrow \Diamond \Diamond p$ If it will be the case that p,

it will be the case that it will be.

 $\neg \Diamond p \rightarrow \Diamond \neg \Diamond p$ If it will never be that p,

then it will be that it will never be that p.

Alan Smaill KRE I3 jan 17 2006

Summary

For reasoning about

- necessity
- knowledge
- belief
- . . .

use

- First-order logic with extra constants, or
- Modal logic with new connectives