[] School of _ e
- informatics

Admin

e Tutorials from week 3

Alan Smaill KRE Jan 13 2006

° School of _ e
= informatics

Logic as a representation language
A logic plays two roles:

e Representation (semantics):
describes the state of the world

e Inference (deduction):
computable operations that are defines on the representations.

Today we consider the second. We need a language to describe the world.

Alan Smaill KRE Jan 13 2006

[School of _e
= informatics

Knowledge Representation and Engineering

Predicate calculus as a representation language

Syntax: a language with a grammar

e Semantics: assigning meaning

Deduction: searching for proof

Alan Smaill KRE Jan 13 2006

[School of _ e
- informatics

Grammar for first-order logic

Define terms by

term = constant
| var
| fn_symbol (term_list)
term_list = term

| term , term_list

Alan Smaill KRE Jan 13 2006

° School of _e
= informatics

Formulas (= making a statement)

form == pred (term_list)
| = form
| form V form
| form A form
| form — form
| Vwvar form

| Jwvar form

Use precedence to disambiguate (or brackets).

Alan Smaill KRE Jan 13 2006

(] School of _ e
= informatics

Quantifiers

Roughly, the idea is that for any statement ®(v) which talks about variable v:

S =Vv, (®(vy,)) ifandonlyif S = ®(vy,)
for all interpretations of v,

S = Jv, (®(vy)) ifandonlyif S &= ®(vy)
for some interpretation of v,,

Alan Smaill KRE Jan 13 2006

° School of _e
= informatics

Semantics
We say what it is for a formula to be true under an interpretation in a structure.
Write S for a structure together with an associated interpretation I.
Given S, and a formula F, write § |= F for “F is true in S".

For details, see Russell and Norvig, chapter 8, section 2.

Alan Smaill KRE Jan 13 2006

[School of _ e
= informatics

Logical Consequence
Our semantics gives us a notion of logical consequence.

We say that a formula G is a logical consequence of formulae Fy, F5 ... F,
(meaning that it follows logically) if and only if, for all structures with
interpretation S,

if SE=EFyand ... and S = F,,
then S = G.

When this is true, we write

Fi,F...F,EG.

Alan Smaill KRE Jan 13 2006

° School of _e
s informatics

Sc what?

If we have some statements we believe to be true, we can ask:
does another statement follow from what we believe?

“Logical consequence” gives a precise way of making sense of the question.

It doesn’t give us a computational answer, though — we need other techniques
for that.

Alan Smaill KRE Jan 13 2006

(] School of _ e
- informatics

A Derivation
How can this derivation of p — p be constructed?

1 (p—=(@—p) —p) —
(p—@®—p)—>@—>p A2

2 po>(—p) —p Al
3 o>@—-p)—pP—p MP12
4 p—(p—p) Al
5 p—op MP 3,4

This is hard to find (in either direction).

Alan Smaill KRE Jan 13 2006

[School of _e
= informatics

Example: Inference System
For reasoning about statements just involving implications.
Axioms
Al: A— (B — A)
A2: (A— (B—C)) —
(A= B)—= (A= (0))

Inference Rule

P P—Q
MP; —M8MM

Q

This language is more expressive than it looks
-eg ANBAC = Disthesameas A—+ B - C — D.

Alan Smaill KRE Jan 13 2006

[School of _ e
= informatics

Search Space
We can make use of the inference rule in two directions.

Bottom-up:
to prove a goal G, start from the axioms and apply the inference rules until G is
found.

Top-down:
to prove G, apply the inference rules backwards until a set of axioms is found.

Alan Smaill KRE Jan 13 2006

[] School of _ e
= informatics

Parameters to rules

Rules can often be applied in several ways; to specify exactly which way is
meant, sometimes a parameter is to be supplied.

For example, when using the modus ponens rule backwards, we need the formula
P as a parameter:
P P—=qQ

Q

Notice that this gives an infinite branching point in the search space — we could
use any formula at all.

MP:

Alan Smaill KRE Jan 13 2006

(] School of _ e
== iInformatics

Sequent Calculus

Instead of using formulas, use a pair of formula lists, linked by the sequent
symbol:

Fl,FQ,...,Fn - Gl,...,Gm
We usually use a set of formulas rather than a list here.

The sequent should be interpreted as saying:
if all the lhs formulas are true, then one of the rhs formulas is true.

Alan Smaill KRE Jan 13 2006

School of

° °
77 Informatics
Computational properties

This inference system is logically adequate — the “right” formulas are provable.

But it is computationally badly behaved — search is unconstrained.

We can find better inference systems that have the same derivable formulas.

Alan Smaill KRE Jan 13 2006

[School of _ e
== informatics

We want an inference system that is equivalent to the old one (using Al, A2,
MP).

So we want axioms and inference rules for the system NEW such that

l_OLDF iff FNEW[]:F

We have introduced extra syntax, so you might expect any inference system to
be more complex; not so!

Alan Smaill KRE Jan 13 2006

[] School of _ e
= informatics

Sequent Rules
Axiom: ... F ... — ... F ...

Inference Rules

impl F,F,...,Fh,=— G,Hy,...,Hp
Fy,...,F,—>F — G,H,...,H,
impE F—)G,Fl,...,Fn:P‘,Hl,...,Hm G,Fl,...,Fn=>Hl,...,Hm
P F> G, R, F,— H,... Hn,

Now the proof of p — p is very easy.

Alan Smaill KRE Jan 13 2006
e f School of _e
Search Space 10 intormatics

[= (aAb) > (aVvDd) |
}

(aAD) => (aVD)

=> (aAb) — (a Vb) impl

N

a,b = (aVb) aAb=—>a,b

(aAb) => (aVD) andE (aAb) = (aVD) orl

=> (aADb) = (a Vb) impl = (aAb) = (a Vb) impl
l \

a,b =— a,b Axiom a,b = a,b Axiom

a,b = (aVb) orl aAb=>a2a,b andE

(aAb) = (aVb) andE (aAb) = (aVDb) orl

=> (aAb) = (a Vb) impl => (aAb) — (a Vb) impl

Alan Smaill KRE Jan 13 2006

School of

° °
= Informatics

Top-down proof search
Suppose we have use the rules in the hand-out for the third week tutorial.
Consider the goal
[] = (aAD) — (a VD)

Applying the rules backwards gives a goal tree that describes the search space —
branching occurs where there is more than one way of extending a derivation
backwards from some unjustified line in the derivation.

Alan Smaill KRE Jan 13 2006

[School of _ e
=5 informatics

Looping Search
Notice that the branching in the search tree is finite here.
However, search may loop.

For example, if we apply impE backwards to p — ¢ == p, we get the original
goal repeated:

Pp2q=p P—24qq9==0Pp
p—>q==p

Alan Smaill KRE Jan 13 2006

[] School of _ e
= informatics

Dealing with looping

There are two possible solutions, if we want to find a complete inference
procedure:

1. Change the inference system — find one that generates no loops.

2. Change the inference strategy — don’t use depth first search; or build in
some check for looping.

Alan Smaill KRE Jan 13 2006

° School of _e
=; informatics

Alternative

Decide in the search space on some condition when the rule that gives looping
should not be applied.

For example:
if looking at ' — G,... = C, only use impE if C # F.

Do we know that we do not lose any provable statements this way — we do lose
some derivations, but a complete inference procedure is not required to find all
the proofs, just to find some proof.

Alan Smaill KRE Jan 13 2006

[School of _e
= informatics

Here is a possible alternative rule.

Instead of
) EF‘)G,Fl,...,FTL:}F,Hl,...,Hn G,F],...,Fn=>H1,...,Hn
m
P P> G, .. By — Hy,..., H,
use
impEQFl,...,Fn=>F,Hl,...,Hn G,F,..., F,=—> Hy,..., H,
F—-G,F,...,F, = H,,...,H,

This will stop the problem of looping. But is can we still derive the same
formulas as before? Yes!! (This needs some thought, though.)

Alan Smaill KRE Jan 13 2006

[School of _ e
=2 iInformatics

Infinite choice points
A full set of rules for sequent calculus has rules for the quantifiers.
A rule for 3 is:

.= F(t)
. = dz F(x)

where t can be any term. So here the branching is infinite.

Here resolution gives us a hint — the choice of candidate terms that are worth
investigating comes from unification with terms that are already in the formula.

Alan Smaill KRE Jan 13 2006

[] School of _ e
== informatics

Special case
Suppose that there are only finitely many constants, and no function symbols.

The we need only look at finitely many possible terms ¢, so the branching is
finite.

(Why is this? — given that there are still infinitely many variables.)

Alan Smaill KRE Jan 13 2006

A Special case.

Summary

Predicate Calculus as a KR language
Sequent Calculus for top down search

Problem of looping, and infinite branching

26 inf

School of _e
ormatics

Alan Smaill

KRE

Jan 13 2006

