[] School of _ e ° School of _e
- informatics = informatics

Today Examinable material

) You should be able to explain the following
e Examinable material . .
e Knowledge Representation Hyp, Reflection Hyp

e higher-order logic programming for Knowledge Representation e Declarative representation
e Deductive Reasoning as symbolic manipulation

e Syntax and semantics for first-order logic (connectives, quantifiers)
e Logical consequence

e Inference system (exact rules not expected), soundness, completeness

e Inference procedure/strategy, completeness, decision procedure

Alan Smaill KRE 115 March 10th 2005 Alan Smaill KRE 115 March 10th 2005
] School of _e ° School of _e
s Informatics - iInformatics
Examinable material ctd Examinable material ctd
e Proof search, using rules top down, bottom up. e belief revision, epistemic entrenchment
e modal logics (how extend non-modal logic, non-modal treatment) e Amphion, deductive synthesis
e counter-models, reading counter model from failed sequent proof e Higher-order logic programming in outline:
N _ _) quantification over predicates and functions,
e reified time; discrete, unbounded, linear order predicates as arguments to (higher-order) predicates,

lambda-t locally bound variables).
e meta-language, simple meta-interpreters for different search, debugging, ambda-terms (locally bound variables)

explanation . . .
e non-monotonic logic, closed world assumption, reasoning with defaults

e reasoning maintenance, de Kleer's ATMS, update procedure

Alan Smaill KRE 115 March 10th 2005 Alan Smaill KRE 115 March 10th 2005

° School of _e
= informatics

Recall

Extend declarative language by adding:
e implication;
e higher-order variables;

e quantification

and associate search procedures with the extended language.

Alan Smaill KRE 115 March 10th 2005

(] School of _ e
= informatics

Reascning with concepts and subsumption
Now our reasoning engine uses the following notions:

% Knowledge base predicates

type intrp bool -> o.

type subsume (i -> bool) -> (i -> bool) -> o.
type concept (i -> bool) -> o.

type role (i -> i -> bool) -> o.

We imagine a KB with statements of type bool;

a concept then categorises individual entities (eg rich in rich fred);
subsumption is a relation between concepts, when one entails the other.
Finally, a role relates two individuals.

This is a form of taxonomy.

Alan Smaill KRE 115 March 10th 2005

School of

. .
= Informatics

Higher-Order Logic for KR

Let's sketch how this language can be used to describe a standard KR approach.
Suppose there are types i,bool for individuals and booleans. The KR language
uses the following syntax (recall that o is the type of AProlog statements):

% First the types of the constants that
% encode the connectives.

type ==> bool -> bool -> bool.
type & bool -> bool -> bool.
type all (i -> bool) -> bool.

type some (i -> bool) -> bool.

type prim_concept (i -> bool) -> o.

type prim_role (i => i -> bool) -> o.

type prim_subsume (i -> bool) -> (i -> bool) -> o

type fact bool -> o.

Alan Smaill KRE 115 March 10th 2005

° School of _ e
= informatics

Concepts, Roles
Now say what the concepts and roles look like:
% How to make complex concepts from simple ones.
concept C :- prim_concept C.
concept (X\ (C1 X & C2 X)) :- concept Cl, concept C2.

concept (X\ (all Y\ (R X Y ==> C1 Y))) :-
concept C1, role R.

So form new concepts by

e conjunction (both concepts hold;

e given conecpt holds for all related objects (under some Role) eg all X's
children are girls

Alan Smaill KRE 115 March 10th 2005

° School of _e
s informatics

Roles

% How to make complex roles from simple ones.

role R :- prim_role R.
role (X\Y\ (some Z\ (R1 X Z & R2Z Y))) :-
role R1, role R2.
role (X\Y\ (some A\ (C A & R1 A X & R2 A Y))) :-
role R1, role R2, concept C.

New roles from:
e composition (get “cousin” from “grandparent” and “grandchild”

e related to common entity
(eg X studied at a university where Y taught)

Alan Smaill KRE 115 March 10th 2005

(] School of _ e
- informatics

Using these ideas

% A simple little theorem prover which uses
% the knowledge representation database.

intrp A :- fact A.

intrp (A & B) :- intrp A, intrp B.
intrp (C X) :- concept C, subsumes C D,
intrp (D X).
intrp (C U) :-
concept C,

subsumes (X\ (all Y\ (R X Y ==> C Y))) D,
intrp (R V U), intrp (D V).

for the last clause:
suppose D V and subsumes (X\ (all Y\ (R X Y ==> C Y))) D; then
all Y\ (R VY ==> C Y); so if we have R V U then we can conclude C U.

Alan Smaill KRE 115 March 10th 2005

School of

Subsumption
Subsumption — one concept is a generalisation of another;

% Subsumption of concepts

subsumes C1 C2 :- prim_subsume C1 C2.
subsumes (Z\ (A Z & B Z)) C :- subsumes A C,
subsumes B C.
subsumes A (Z\ (B Z & C Z)) :- subsumes A B.
subsumes A (Z\ (B Z & C Z)) :- subsumes A C.

subsumes (Z\ (all (Y\ (RZ Y ==> A Y))))
(Z\ (all (Y\ (R Z Y ==> B Y))))
subsumes A B.

subsumes C C.

% eg
% prim_subsumes mammal person.

° °
= Informatics

Alan Smaill KRE 115 March 10th 2005
® . School of o
= informatics
Example

Now, we can use these tools to reason over a simple knowledge base, e.g.:

% membership in concepts (is_a statements)
fact (message ml).
fact (person kirk).
fact (crew scotty).

% relations among individuals
fact (recipient ml scotty).
fact (body ml send-help).

fact (sender kirk mi).

Alan Smaill KRE 115

March 10th 2005

example ctd

% some primitive concepts

prim_concept
prim_concept
prim_concept
prim_concept
prim_concept

message.
person.

crew.

commander .
important_message.

% some primitive roles
prim_role recipient.
prim_role body.
prim_role sender.
prim_role senddate.

School of

° °
= Informatics

Alan Smaill

KRE 115

Querying

Now this machinery can infer, eg:

interp (commander kirk)
interp (person scotty)

March 10th 2005

School of

® .
== Informatics

Alan Smaill

KRE 115

March 10th 2005

[School of _e
— informatics

%% Some subsumption relations

% for
prim_subsume
prim_subsume
prim_subsume
prim_subsume
prim_subsume

prim_subsume

% for
prim_subsume

messages
thing message.
(X\ (all Y\ (sender X Y ==> person Y)))

message.
(X\ (all Y\ (body X Y ==> text Y)))
message.

(X\ (all Y\ (recipient X Y ==> crew Y)))
message.

message important_message.
(X\ (all Y\(sender X Y ==> commander Y))) important_message.

crew
person crew.

Alan Smaill

KRE 115 March 10th 2005

School of

° .
= Informatics

Summary

e Examinable material

e Higher-order logic programming

e KR by concepts and roles, with subsumption

Alan Smaill

KRE 115 March 10th 2005

