Today

- Examinable material
- higher-order logic programming for Knowledge Representation

Alan Smaill KRE I15 March 10th 2005

nformatics

Examinable material ctd

- Proof search, using rules top down, bottom up.
- modal logics (how extend non-modal logic, non-modal treatment)
- counter-models, reading counter model from failed sequent proof
- reified time; discrete, unbounded, linear order
- meta-language, simple meta-interpreters for different search, debugging, explanation . . .
- non-monotonic logic, closed world assumption, reasoning with defaults
- reasoning maintenance, de Kleer's ATMS, update procedure

Examinable material

You should be able to explain the following

- Knowledge Representation Hyp, Reflection Hyp
- Declarative representation
- Deductive Reasoning as symbolic manipulation
- Syntax and semantics for first-order logic (connectives, quantifiers)
- Logical consequence
- Inference system (exact rules not expected), soundness, completeness
- Inference procedure/strategy, completeness, decision procedure

Alan Smaill KRE I15 March 10th 2005

Examinable material ctd

- belief revision, epistemic entrenchment
- Amphion, deductive synthesis
- Higher-order logic programming in outline: quantification over predicates and functions, predicates as arguments to (higher-order) predicates, lambda-terms (locally bound variables).

Recall

:

Extend declarative language by adding:

- implication;
- higher-order variables;
- quantification

and associate search procedures with the extended language.

Alan Smaill KRE 115 March 10th 2005

Reasoning with concepts and subsumption

Now our reasoning engine uses the following notions:

```
% Knowledge base predicates type intrp bool -> o. type subsume (i -> bool) -> (i -> bool) -> o. type concept (i -> bool) -> o. type role (i -> i -> bool) -> o.
```

We imagine a KB with statements of type bool;

a concept then categorises individual entities (eg rich in rich fred); subsumption is a relation between concepts, when one entails the other. Finally, a role relates two individuals.

This is a form of taxonomy.

Higher-Order Logic for KR

Let's sketch how this language can be used to describe a standard KR approach. Suppose there are types i,bool for individuals and booleans. The KR language uses the following syntax (recall that o is the type of λ Prolog statements):

```
% First the types of the constants that
% encode the connectives.
           ==>
                      bool -> bool -> bool.
type
                      bool -> bool -> bool.
type
           &
                      (i \rightarrow bool) \rightarrow bool.
type
           all
                      (i \rightarrow bool) \rightarrow bool.
type
type prim_concept (i -> bool) -> o.
type prim_role
                        (i \rightarrow i \rightarrow bool) \rightarrow o.
type prim_subsume (i \rightarrow bool) \rightarrow (i \rightarrow bool) \rightarrow o
type
          fact
                         bool -> o.
```

Alan Smaill KRE I15 March 10th 2005

Concepts, Roles

Now say what the concepts and roles look like:

% How to make complex concepts from simple ones.

So form new concepts by

- conjunction (both concepts hold;
- given conecpt holds for all related objects (under some Role) eg all X's children are girls

Roles

% How to make complex roles from simple ones.

New roles from:

- composition (get "cousin" from "grandparent" and "grandchild"
- related to common entity
 (eg X studied at a university where Y taught)

Alan Smaill KRE I15 March 10th 2005

Using these ideas

Subsumption

Subsumption – one concept is a generalisation of another:

Alan Smaill KRE 115 March 10th 2005

12 Informatics

Example

Now, we can use these tools to reason over a simple knowledge base, e.g.:

```
% membership in concepts (is_a statements)
fact (message m1).
fact (person kirk).
fact (crew scotty).

% relations among individuals
fact (recipient m1 scotty).
fact (body m1 send-help).
fact (sender kirk m1).
```

 Alan Smaill
 KRE I15
 March 10th 2005
 Alan Smaill
 KRE I15
 March 10th 2005

nf School of tics

example ctd

% some primitive concepts prim_concept message.

prim_concept person.

prim_concept crew.

prim_concept commander.

prim_concept important_message.

% some primitive roles prim_role recipient. prim_role body.

prim_role sender.

prim_role senddate.

Alan Smaill KRE I15 March 10th 2005

Querying

Now this machinery can infer, eg:

interp (commander kirk) interp (person scotty)

for messages

prim_subsume thing message.

%% Some subsumption relations

prim_subsume (X\ (all Y\ (sender X Y ==> person Y)))

prim_subsume (X\ (all Y\ (body X Y ==> text Y)))

message.

prim_subsume (X\ (all Y\ (recipient X Y ==> crew Y)))

message.

prim_subsume message important_message.

prim_subsume (X\ (all Y\(sender X Y ==> commander Y))) important_message.

for crew

prim_subsume person crew.

Alan Smaill KRE I15 March 10th 2005

Summary

- Examinable material
- Higher-order logic programming
- KR by concepts and roles, with subsumption