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Contrast

Functional programming languages (LISP, ML) are also declarative, in a different
way: the program specifies a meaning for each function

These languages are higher order, in that the functions themselves are first-class
objects of the language, and can be passed around as arguments.

Is there something analogous we can do with a Logic Programming approach?
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Recall:

For pure Prolog (Prolog without meta-logical predicates), we have a declarative
reading of a program as a logical description of a problem domain.

This uses Horn clauses; in the program variables are (implicitly) universally
quantified (V ), and in queries existentially quantified (3). We search for a
derivation that the the query follows logically from the program.
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What Higher-Order Logic Programming is not

We have already seen that we can use Prolog as a meta-language for Prolog,
and so manipulate Prolog programs in Prolog.

This is not using higher-order ideas: is is mixing together two separate
first-order representations, one a representation of an object domain, and
another a representation of the syntax of the first representation (compare the
reflection hypothesis).

The logic here is called first-order because quantifiers are only used over
individual variables — we can't quantify over functions, or predicates in this logic.
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A richer logic

Suppose we allow quantifiers also over predicates: this takes us to second-order
logic. We extend the syntax of first order logic by allowing variables for
predicates as well as for individuals, and all V, 3 quantifiers using these variables.
The reading of these quantifiers is just what you would expect . . .

Example:
VP P(0) AVz (P(z) — P(suc(x))) = Vy P(y)

This lets us express standard induction on the natural numbers as a single
statement about all properties P.
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AProlog
We outline a language that lets us do this sort of thing. It should let us:

e Search for derivations systematically;

e Provide witnessing answers for query variables.

In the first-order case there is a unification algorithm that is used in computing
solution values for query variables (see Automated Reasoning module for
details); this has to be extended to deal with other kinds of variables.
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Note that if we tried to express this directly in Horn clause logic, there are three
problems:

e Prolog variables can't appear in the “predicate” position (since it’s first
order).

e One of the subgoals is an implication.
e We want local quantification of the z.
We'd like to be able to write something like:

P(Y) :- P(0), Vx.(P(x) => P(suc(x))).

and have a programming language that made sense of this.
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A-terms
Both LISP and ML make use of \-terms:

LISP: (lambda (x) (+ x 4))
ML: fnx =>x + 4

and the evaluation of the applications of such terms is the main computational
mechanism of the languages.

AProlog includes such terms also, with the syntax
x\ (x + 4)

and the treatment of such terms has to let equivalent terms be equal (and find
solutions).
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Examples

7- x\ (x +4)) = (y\ (y + 4).

solved

7- (x\ (x + 4)) 3 =23+ 4.

solved

- F3=3+ 4.

F=x\3+4;

F=x1\x1+4;

no more solutions
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Quantifiers

Use the following to express quantification:
for Vx A, use a lambda term to express the binding of the variable, and then a
constant pi to quantify. Thus a goal

Vex ==z

becomes
pi ( x\ (x =x) )
(the outer brackets can be omitted); and VP P(0) — P(0) becomes
pi C(p\ ( (p 0) => (p 0) ).
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Extending the language
Horn clause logic is extended by adding:

e A type structure: syntax items have user declared types; there is a special
type o of propositions; functions from type t; to type t2 have type t; — t.
Predicates on objects of type ¢ have type t — o.

e Add implications to the language: G => H.
e Universal quantification (in programs and queries).

e Existential quantification (just in queries).
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Examples
?7- pi x\ (x = x).
solved
?7-pix\ (piy\ (x=1y)).
no
7- pi x\ (x = (Y x)).
Y =x\ x ;
no more solutions
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Search

What search operations are used to solve queries?

There are search operations associated with different connectives in the goal; for
example:

e To solve D => G, add D to the program clauses, and solve G.

e Tosolve pi (x\ G x), pick a new parameter c (i.e. a constant that does
not appear in the current problem), and solve G c.

e To solve atomic G, find a program clause whose head can be instantiated to
match G, and solve the body.
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type sterile (i -> o).

type in (i ->1i->0).
type heated (i -> o).
type bug 1 > o).
type dead (i -> o).
type j i.

sterile Jar :- pi x\ ( (bug x) =>

(in x Jar) => (dead x) ).
dead X :— heated Y, in X Y, bug X.
heated j.

% query:
% 7- sterile j.
% solved
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Example (McCarthy)

Try to formalise the following:

Something is sterile if all the bugs in it are dead.

If a bug is in an object which is heated, then the bug is dead.
This jar is heated.

So, the jar is sterile.

This is a natural and simple argument, and we want to express in directly. We
could use full predicate calculus (but search is hard there).

In the language above, we get as follows.
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Using higher-order features.

Often we want to do similar things for different predicates we are reasoning
about. For example, the standard ancestor/2 predicate is defined as a
transitive extension of parent/2:

ancestor (X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Similarly, get less than from the successor relation, descendent from child . . .

Now, do this once and for all:
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type trans (A -> A ->0) -> (A ->A > 0).
trans Pred X Y :- Pred X Y.
trans Pred X Z :- Pred X Y, trans Pred Y Z.

and define ancestor via

ancestor X Y :- trans parent X V.
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This gives most of the expected properties of implication, e.g.
?7- a=> (b => a).

solved

?7- (a=> (b =>¢c)) == (a=>b) = (a=>c).
solved

However, this is not implication as characterised by the standard truth table.
Consider:

?7- ((a => b) => a) => a.

no
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Inferring with implications

Recall that a goal ?- P => Q is tackled by adding P to the program, and trying
to show Q. Standard Prolog clauses allow just one implication (in the other
direction).

a :— b.
b :- c.
7- c => a
Solved

More complex statements can get added too:

a :- b.

c.

?7- (¢ => b) => a
Solved
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Agent Inference

We can use this to give declarative accounts of different agent inference
processes, in a common framework with inference about an object domain:

type base_bel agent -> o -> o. % primitive beliefs
type bel agent -> o -> o. % derived beliefs
type al agent.

Give all agents a simple inference mechanism:

bel A B :- base_bel A B.
bel A Q :- base_bel A (P => ), bel A P.
bel A (P & Q) :- bel A P, bel A Q.

bel A (bel A X) :- bel A X. % introspection
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Suppose some facts about family relationships. We can then express:

% al has real facts, plus one extra belief.

base_bel al (parent X Y) :- parent X Y.
base_bel al (parent sean barney).

% a2 just has real facts
base_bel a2 (parent X Y) :- parent X Y.
% agents have standard notion of ancestor

base_bel A ( parent X Y => ancestor X Y ).
base_bel A ( ( parent X Y & ancestor Y Z ) => (ancestor X Z) ).
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More complex inference

Search becomes expensive quickly here. We can restrict the amount of inference
the agents perform:

bel A (parent A B) :- parent A B.
% believe prolog!
bel A (bel A F) :- bel_base A F.
% limited introspection
bel A F :- inferrable F,
% just look at "interesting" statements
bel_base A G, bel_base A H,
G =>H-=>F.
% limited deductive power
% (got from 2 basic beliefs).
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Examples

Now can query for al’s beliefs, which include the consequences of the “false”
belief, unlike a2's beliefs:

?- bel al (ancestor sean X).

X

barney ;
X = 1liz ;

no more solutions
7?- bel a2 (ancestor sean X).

no
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Now we can express more complex relationships between belief systems.

parent a b.

% belief base
bel_base a (parent b c).
bel_base a ((parent X Y) => (ancestor X Y)).
bel_base a (pi x\ (bel b x) => (bel a x)).
% a believes he believes
% everything b believes.
bel_base b (parent c b).
% b has this different from a.
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Example queries
From this we get that agent a has some strange beliefs —

?- bel a (bel a (parent b X)).

X=c
?7- bel a (bel a (parent c X)).

X=5»
?- bel a (parent c X).

no
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Summary

26 inf

Can extend Logic Programming paradigm to a richer language.

Allows predicates to be arguments to (HO) predicates.

Incorporates A-term reduction.

Has an associated notion of uniform search.

School of _e
ormatics

Alan Smaill KRE 115

Mar 7 2006



