[] School of _ e
- informatics

Today:
e Higher order logic for KR
Alan Small KRE 15 Nar 7 2006
= informatics
Contrast

Functional programming languages (LISP, ML) are also declarative, in a different
way: the program specifies a meaning for each function

These languages are higher order, in that the functions themselves are first-class
objects of the language, and can be passed around as arguments.

Is there something analogous we can do with a Logic Programming approach?

Alan Smaill KRE 115 Mar 7 2006

School of

° .
= iInformatics

Recall:

For pure Prolog (Prolog without meta-logical predicates), we have a declarative
reading of a program as a logical description of a problem domain.

This uses Horn clauses; in the program variables are (implicitly) universally
quantified (V), and in queries existentially quantified (3). We search for a
derivation that the the query follows logically from the program.

Alan Smaill KRE 115 Mar 7 2006

[School of _ e
- informatics

What Higher-Order Logic Programming is not

We have already seen that we can use Prolog as a meta-language for Prolog,
and so manipulate Prolog programs in Prolog.

This is not using higher-order ideas: is is mixing together two separate
first-order representations, one a representation of an object domain, and
another a representation of the syntax of the first representation (compare the
reflection hypothesis).

The logic here is called first-order because quantifiers are only used over
individual variables — we can't quantify over functions, or predicates in this logic.

Alan Smaill KRE 115 Mar 7 2006

° School of _e
= informatics

A richer logic

Suppose we allow quantifiers also over predicates: this takes us to second-order
logic. We extend the syntax of first order logic by allowing variables for
predicates as well as for individuals, and all V, 3 quantifiers using these variables.
The reading of these quantifiers is just what you would expect . . .

Example:
VP P(0) AVz (P(z) — P(suc(x))) = Vy P(y)

This lets us express standard induction on the natural numbers as a single
statement about all properties P.

Alan Smaill KRE 115 Mar 7 2006

(] School of _ e
= informatics

AProlog
We outline a language that lets us do this sort of thing. It should let us:

e Search for derivations systematically;

e Provide witnessing answers for query variables.

In the first-order case there is a unification algorithm that is used in computing
solution values for query variables (see Automated Reasoning module for
details); this has to be extended to deal with other kinds of variables.

Alan Smaill KRE 115 Mar 7 2006

° School of _e
= informatics

Note that if we tried to express this directly in Horn clause logic, there are three
problems:

e Prolog variables can't appear in the “predicate” position (since it’s first
order).

e One of the subgoals is an implication.
e We want local quantification of the z.
We'd like to be able to write something like:

P(Y) :- P(0), Vx.(P(x) => P(suc(x))).

and have a programming language that made sense of this.

Alan Smaill KRE 115 Mar 7 2006

[School of _ e
= informatics

A-terms
Both LISP and ML make use of \-terms:

LISP: (lambda (x) (+ x 4))
ML: fnx =>x + 4

and the evaluation of the applications of such terms is the main computational
mechanism of the languages.

AProlog includes such terms also, with the syntax
x\ (x + 4)

and the treatment of such terms has to let equivalent terms be equal (and find
solutions).

Alan Smaill KRE 115 Mar 7 2006

° School of _e
s informatics

Examples

7- x\ (x +4)) = (y\ (y + 4).

solved

7- (x\ (x + 4)) 3 =23+ 4.

solved

- F3=3+ 4.

F=x\3+4;

F=x1\x1+4;

no more solutions

Alan Smaill KRE 115 Mar 7 2006

— informatics

Quantifiers

Use the following to express quantification:
for Vx A, use a lambda term to express the binding of the variable, and then a
constant pi to quantify. Thus a goal

Vex ==z

becomes
pi (x\ (x =x))
(the outer brackets can be omitted); and VP P(0) — P(0) becomes
pi C(p\ ((p 0) => (p 0)).

Alan Smaill KRE 115 Mar 7 2006

School of

° .
= Informatics

Extending the language
Horn clause logic is extended by adding:

e A type structure: syntax items have user declared types; there is a special
type o of propositions; functions from type t; to type t2 have type t; — t.
Predicates on objects of type ¢ have type t — o.

e Add implications to the language: G => H.
e Universal quantification (in programs and queries).

e Existential quantification (just in queries).

Alan Smaill KRE 115 Mar 7 2006

[School of _ e
- informatics

Examples
?7- pi x\ (x = x).
solved
?7-pix\ (piy\ (x=1y)).
no
7- pi x\ (x = (Y x)).
Y =x\ x ;
no more solutions
Alan Smaill KRE 115 Mar 7 2006

[] School of _ e
= informatics

Search

What search operations are used to solve queries?

There are search operations associated with different connectives in the goal; for
example:

e To solve D => G, add D to the program clauses, and solve G.

e Tosolve pi (x\ G x), pick a new parameter c (i.e. a constant that does
not appear in the current problem), and solve G c.

e To solve atomic G, find a program clause whose head can be instantiated to
match G, and solve the body.

Alan Smaill KRE 115 Mar 7 2006

(] School of _ e
= informatics

type sterile (i -> o).

type in (i ->1i->0).
type heated (i -> o).
type bug 1 > o).
type dead (i -> o).
type j i.

sterile Jar :- pi x\ ((bug x) =>

(in x Jar) => (dead x)).
dead X :— heated Y, in X Y, bug X.
heated j.

% query:
% 7- sterile j.
% solved

Alan Smaill KRE 115 Mar 7 2006

[School of _e
— informatics

Example (McCarthy)

Try to formalise the following:

Something is sterile if all the bugs in it are dead.

If a bug is in an object which is heated, then the bug is dead.
This jar is heated.

So, the jar is sterile.

This is a natural and simple argument, and we want to express in directly. We
could use full predicate calculus (but search is hard there).

In the language above, we get as follows.

Alan Smaill KRE 115 Mar 7 2006

[School of _ e
— informatics

Using higher-order features.

Often we want to do similar things for different predicates we are reasoning
about. For example, the standard ancestor/2 predicate is defined as a
transitive extension of parent/2:

ancestor (X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Similarly, get less than from the successor relation, descendent from child . . .

Now, do this once and for all:

Alan Smaill KRE 115 Mar 7 2006

[] School of _ e
= informatics

type trans (A -> A ->0) -> (A ->A > 0).
trans Pred X Y :- Pred X Y.
trans Pred X Z :- Pred X Y, trans Pred Y Z.

and define ancestor via

ancestor X Y :- trans parent X V.

Alan Smaill KRE 115 Mar 7 2006

(] School of _ e
= informatics

This gives most of the expected properties of implication, e.g.
?7- a=> (b => a).

solved

?7- (a=> (b =>¢c)) == (a=>b) = (a=>c).
solved

However, this is not implication as characterised by the standard truth table.
Consider:

?7- ((a => b) => a) => a.

no

Alan Smaill KRE 115 Mar 7 2006

School of

° .
= Informatics

Inferring with implications

Recall that a goal ?- P => Q is tackled by adding P to the program, and trying
to show Q. Standard Prolog clauses allow just one implication (in the other
direction).

a :— b.
b :- c.
7- c => a
Solved

More complex statements can get added too:

a :- b.

c.

?7- (¢ => b) => a
Solved

Alan Smaill KRE 115 Mar 7 2006

[School of _ e
= informatics

Agent Inference

We can use this to give declarative accounts of different agent inference
processes, in a common framework with inference about an object domain:

type base_bel agent -> o -> o. % primitive beliefs
type bel agent -> o -> o. % derived beliefs
type al agent.

Give all agents a simple inference mechanism:

bel A B :- base_bel A B.
bel A Q :- base_bel A (P =>), bel A P.
bel A (P & Q) :- bel A P, bel A Q.

bel A (bel A X) :- bel A X. % introspection

Alan Smaill KRE 115 Mar 7 2006

[] School of _ e
= informatics

Suppose some facts about family relationships. We can then express:

% al has real facts, plus one extra belief.

base_bel al (parent X Y) :- parent X Y.
base_bel al (parent sean barney).

% a2 just has real facts
base_bel a2 (parent X Y) :- parent X Y.
% agents have standard notion of ancestor

base_bel A (parent X Y => ancestor X Y).
base_bel A ((parent X Y & ancestor Y Z) => (ancestor X Z)).

Alan Smaill KRE 115 Mar 7 2006

(] School of _ e
=: informatics

More complex inference

Search becomes expensive quickly here. We can restrict the amount of inference
the agents perform:

bel A (parent A B) :- parent A B.
% believe prolog!
bel A (bel A F) :- bel_base A F.
% limited introspection
bel A F :- inferrable F,
% just look at "interesting" statements
bel_base A G, bel_base A H,
G =>H-=>F.
% limited deductive power
% (got from 2 basic beliefs).

Alan Smaill KRE 115 Mar 7 2006

[School of _e
= informatics

Examples

Now can query for al’s beliefs, which include the consequences of the “false”
belief, unlike a2's beliefs:

?- bel al (ancestor sean X).

X

barney ;
X = 1liz ;

no more solutions
7?- bel a2 (ancestor sean X).

no

Alan Smaill KRE 115 Mar 7 2006

[School of _ e
= informatics

Now we can express more complex relationships between belief systems.

parent a b.

% belief base
bel_base a (parent b c).
bel_base a ((parent X Y) => (ancestor X Y)).
bel_base a (pi x\ (bel b x) => (bel a x)).
% a believes he believes
% everything b believes.
bel_base b (parent c b).
% b has this different from a.

Alan Smaill KRE 115 Mar 7 2006

[] School of _ e
= informatics

Example queries
From this we get that agent a has some strange beliefs —

?- bel a (bel a (parent b X)).

X=c
?7- bel a (bel a (parent c X)).

X=5»
?- bel a (parent c X).

no

Alan Smaill KRE 115 Mar 7 2006

Summary

26 inf

Can extend Logic Programming paradigm to a richer language.

Allows predicates to be arguments to (HO) predicates.

Incorporates A-term reduction.

Has an associated notion of uniform search.

School of _e
ormatics

Alan Smaill KRE 115

Mar 7 2006

