[] School of _ e
- informatics

Today

e programs from proofs

e induction and recursion

Alan Smaill KRE 114 March 3rd 2006

(] School of _e
= informatics

Deductive Synthesis

e Express the desired relation between the input and output in the predicate
calculus:
spec(input, output)
Assume that we have properties of the datatypes involved (lists, strings, . . .)
as axioms.

e Now prove that the specification can be satisfied; find a derivation of

Vx Jy spec(z,y).

e |f the proof uses constructive logic, then we can automatically convert such a
proof into a functional program prog such that

YV spec(z, prog(z)).

Alan Smaill KRE 114 March 3rd 2006

[School of _e
= informatics

Deductive Synthesis
Constructing a program by finding a derivation.

In Amphion, one stage involves
showing that the specification can be satisfied.

We can use inference systems to do this
(many possibilities).

So we want to provide tools to support SE.
But how does this construct a programme?

In general, it doesn't! — we have to find the good derivations (which means, a
different logic).

Alan Smaill KRE [14 March 3rd 2006

[School of _ e
- informatics

Some Rules

Standard rules for the quantifiers; a version of these is found in sequent calculus
formulations.

alll To show Vz P(z), show P(x,) for a new variable z,,
somel To show Jz P(z), supply a term t, and show P(t)
allE If given Vz P(z), can also assume P(t) for any term ¢
someE If given Jdx P(z), can assume P(zx,) for new var z,,

Alan Smaill KRE 114 March 3rd 2006

° School of _e
= informatics

Constructive Logic

Some of the usual rules have to be restricted. For example,

e |n case analysis, we must have a way of computing which case holds.

In standard logic, for any formula F', we can always split a proof into two
branches, one where F' holds and one where —F' holds.

In constructive logic, we need a decision procedure before this split is allowed.

We can use
Vn,m :intn=mVn#m
but not
Yn,m :realm=mvVn#m
Alan Smaill KRE 114 March 3rd 2006

(] School of _ e
= informatics

Synthesis and reasoning

We can't just use a standard FOL system to show that a specification can be
met, and expect that there is a program that computes what we want —
maybe the input/output relation always makes sense, but there is no way of
computing the output (see Computability course).

So we need another inference system; what about FOL (with some restrictions).
We take a standard set of rules before restrictions.

Alan Smaill KRE 114 March 3rd 2006

School of

. .
= Informatics

e Proof by contradiction is not allowed.

We can’t conclude A is true just because —A gives a contradiction.

So we replace the task of constructing a program with that of proving a
theorem. This is still a hard task.

If we do find a proof, we know that the program is guaranteed to fit its
specification, and this is a big advantage.

Alan Smaill KRE [14 March 3rd 2006

° School of _ e
= informatics

Example
Find the integer square root of z.

Use the specification
spec(z,y) =ger Y2 <z A(y+1)2 >z
And look for a proof of

Ve Iy <zA(y+1)?2 >z

Apart from usual rules, we have an induction rule.

Alan Smaill KRE 114 March 3rd 2006

° School of _e
s informatics

After induction there are two things to prove.

First we need to show
Jyy <O0A(y+1)2>0.

Do this by taking the value 0 for y and using arithmetic.
Next assume

<k A (y+1)2>k (1)
and we need to prove

Jyy? <k+1 A (y+1)2>Ek+1
The someE rule applied to hypothesis (1) gives us a new assumption

Yo <k A (@W+1)’>k (2)

Alan Smaill KRE 114 March 3rd 2006

(] School of _ e
- informatics

From proof to program

A program is obtained by attaching bits of program to the proof rules, and
building up the program from the way the rules are used in the proof.

For example, the induction rule says:

P(0) P(n)— P(n+1)
P(x)

Suppose programs A,Q have been associated with the two formulas above the
line. We can then associate with P(z) the program

fun Rec 0 = A
| Rec n = @ (Rec (n-1))

Alan Smaill KRE 114 March 3rd 2006

[School of _e
= informatics

There are now two cases to consider:

either (a) (yo+1)2=k+1
or (b)) (yo+1)2>k+1.

e Case (a): Take yo + 1 to be the answer (use somel rule with that value).

We now have to check that

(o+12<k+1A(yo+2)?2>k+1.

e Case (b): Take yo to be the answer. We now have to check that

Yo <k+1 A (o+1)?>k+1

Checking this arithmetic finishes the proof.

Alan Smaill KRE [14 March 3rd 2006

[School of _ e
= informatics

Putting together all the parts of the proof, we get the following functional
program:

fun prog 0 = 0
| prog n = let val x = prog (n-1)
in
if (1+x)? = n
then (1+x)
else x
end

This is not an efficient program — but it is a correct program, and we have
verified its correctness!

Alan Smaill KRE 114 March 3rd 2006

[] School of _ e
= informatics

A Synthesis KBS

A KBS to support this sort of program construction has to include:
e A proof system with program constructs;
Several such systems are known and implemented.

e Some knowledge of how to build derivations, especially where induction is
needed.

e Knowledge of which derivations correspond to efficient programs, so that
synthesis is directed.

Alan Smaill KRE 114 March 3rd 2006

(] School of _ e
== iInformatics

Complexity of Inductions

Rules contribute to complexity in different ways:

Step Case Complexity
P(z) > P(z+1) Linear
P(z/2) — P(x) Log
P(a),P(b) — P(c) (for a,b < c) | Exponential

This close link between induction (in proof) and recursion (in program) gives us
a way of influencing the quality of the implementation.

Alan Smaill KRE 114 March 3rd 2006

[School of _e
— informatics

Proofs by Induction

Many inductive proofs can be found by following heuristics developed by Boyer
and Moore.

The main choices to make are
e which induction rule to use
e which induction variable to apply the rule to

The efficiency of the program is largely dependent on the induction rule chosen.

Alan Smaill KRE [14 March 3rd 2006

[School of _ e
== informatics

Summary
e Synthesis via deduction
e Constructive Logic

e Programs from Proofs

Alan Smaill KRE 114 March 3rd 2006

