[] School of _ e
- informatics

Today: Amphion System
e Computer Assisted SE system

e for the composition software library items

Alan Smaill KRE 113 Feb 28 2006

° School of _e
= informatics

Methodology
e The user is guided in putting together a formal specification;

e A program meeting the specification is assembled automatically from a library
of subroutines.

So users need to know about the basic concepts of the application domain; but
not about the programming constructs.

Aimed at experts in the domain in question, without assuming programming
expertise.

Alan Smaill KRE 113 Feb 28 2006

Amphion

e Amphion system:

developed by NASA by Automated Software Engineering group;

work at NASA on program synthesis is described at
ti.arc.nasa.gov/ase/docs/progsyn.html

e Putting together programs for domain specific tasks;

e Helps with the program reuse problem;

School of

. .
s informatics

e Even well documented software libraries are under-used — how can the user

- find out what is there?
— put the routines together?

Alan Smaill

KRE 113

Components

e Specification acquisition subsystem (generic) —

To build up domain characterisation.

e Program synthesis subsystem (generic) —
To assemble programs from routines and overall specifications

e Domain specific subsystem —

- inf

Feb 28 2006

School of _e
ormatics

Theory of the domain, interface routines and automation routines for the

synthesis system.

Alan Smaill

KRE 113

Feb 28 2006

° School of _e
= informatics

System Architecture

Domain Specification

Software Library Routines

Program Synthesis Desired Software
Domain Theory
Interface theory
Synthesis routines
AMPHION
Alan Smaill KRE 113 Feb 28 2006

(] School of _ e
= informatics

Specifications

These are written in first order logic, augmented with lambda-calculus
(like ML fn x=> ... syntax).
The shape of a specification is:
lambda(inputs)find(outputs)exists(intermed)

conj; Aconjy---Aconjy
where the conjuncts are either an equation defining a function, or a constraint
(P(Vl, e ;Vm))-
Specifications are checked to see that they can be solved abstractly. If they
cannot be solved, error information is returned to the user.

Alan Smaill KRE 113 Feb 28 2006

° School of _e
= informatics

In use

Used to develop routines to control astronomical observations;

Builds on existing library of astronomical routines;

Programs can be assembled much faster;

Users can use the system after a short tutorial;

Uses deductive synthesis to put together programs automatically.

Alan Smaill KRE 113 Feb 28 2006

° School of _ e
= informatics

Deriving the program

Given a satisfiable specification, look to find a proof of a statement:
Vinputs Joutputs spec(inputs, outputs)

A derivation of a statement of this form gives directly a functional program that
fits the specification, ie a program F such that

Vinputs spec(inputs, F(inputs))

Use a functional language where the terms correspond to routines in the target
(imperative) programming language; the functional program can get translated.

Alan Smaill KRE 113 Feb 28 2006

° School of _e
s informatics

Language specific routines

Only at this point is something related to the programming language used;
generate variable declarations and sequence of subroutine calls.

So, the system could be easily adapted to different programming languages.

Alan Smaill KRE 113 Feb 28 2006

(] School of _ e
- informatics

Domain Engineering
Amphion needs to know how to use the domain information (eg geometry).

The subroutines are assumed to be given, and correct w.r.t their own
specification. So Amphion has

e abstract theory of domain (eg geometry);
e concrete theory of what the subroutines do;

e implementation relation between abstract and concrete theories.

Alan Smaill KRE 113 Feb 28 2006

[School of _e
= informatics

Example problem

Suppose want to compute angle of sun light at a point on a planet’s surface
visible from satellite boresight. Specify this by a series of statements:

Let Solar-Incidence-Angle be angle between rays Surface-Normal and
Ray-Intersection.

Let Surface-Normal be ray normal to Jupiter-Body at the point
Boresight-Intersection.

These are the conjuncts of the specification, in the language of Euclidean
geometry. A diagrammatic representation is given to the user, and the program
synthesised.

Alan Smaill KRE 113 Feb 28 2006

[School of _ e
= informatics

Abstract Theory

This is an iterative process, involving the domain expert, and KBSE expert. For
the astronomical domain, it involved collaboration over some time. For example,
need here to choose time system, and notion of coordinate frame.

The abstract theory here has:
e types for objects, e.g. points, lines, ellipsoids, . . .
e constructors (eg ray from point and direction);

e geometric operations (eg intersection).

Alan Smaill KRE 113 Feb 28 2006

[] School of _ e
= informatics

Abstract theory ctd

Also need some other relations between the concepts, eg

e the relation between times and places corresponding to light travelling from
one to the other.

So, this is a fairly complex theory.

The existing routines have to be characterised also, in terms of programming
language datatypes (vectors of reals, eg). Conversion functions are needed too.

Alan Smaill KRE 113 Feb 28 2006

(] School of _ e
== iInformatics

Domain Theories and Specification

e Alongside descriptions of code capabilities, we want descriptions of the
domain that the final system is intended for (astronomical observations,
computer vision systems, telephone exchange software, etc.).

e Having built such a KB, we want also to support the construction of a
specification of a particular problem specification in the domain.

We looks at ways in which these two tasks can be aided, with reference to the
Amphion system and others.

Alan Smaill KRE 113 Feb 28 2006

[School of _e
— informatics

Specification Acquisition
This builds on the domain theory syntax, via GUI, which also ensures the

consistence of the input format.

Specifications may be put together in a top-down, or bottom-up style, according
to taste.

The specification will be checked abstractly, to weed out some obvious problems;
warnings are given of over-constrained and under-constrained variables. Some
overloading of functions and relations is allowed.

Alan Smaill KRE 113 Feb 28 2006

[School of _ e
== informatics

Domain theories ctd

In each case, we assume there is an underlying logical formulation of the domain
theory and of the problem specification. There are several ways we can be
helped here:

e Provision of graphical representation;
e Consistency checking: is the domain theory consistent on its own?

e Well-formed input: checking that the specification makes logical sense (e.g.
only uses syntax present in the domain theory).

This assumes that the task is specified in terms of the domain theory, and not in
terms of computation — this is more acceptable to end users.

Alan Smaill KRE 113 Feb 28 2006

[] School of _ e
= informatics

Graphical /Logical Translations

There are other places where there is such a close link between graphical
description and logical that we can translate from one to the other.

For example, consider describing an electrical circuit; it is possible to build up
circuit descriptions graphically, and get a corresponding logical description
automatically, in terms of a fixed syntax such as one we saw (andg, org, . . .,
output, input, connected).

Here we assume that the properties of the components are already known (or
supplied by the user), and the circuit specified via a GUI.

Alan Smaill KRE 113 Feb 28 2006

Slide 18: example

+ | Amphion/NAIF : Solar- Incidence- Galileo- Boresight-11

File Edit Graph Spec Preferences Macro Help

[3]
4
D
Photon-Sun- Jupiter
towards separation
Solaz-Incidence- Angle
/

./MW R pativsan-iayt

Roy-Intersection-Su

Photon-Tupiter-Galilen

tocation-of aF-fime

normal
Burfacellormal

from.

Fepitex-Body

from

i-spaesiaft
b (s Direction-2

\J
Gahlan—Spanemaﬁ—Tm;meis@ e
o
e

e 4

Boreiile \. at-paint

Gt O ey <
i touas Intersectlon
il - Boresight-Interseetion

N

Generating a Configuration

The basic operations are

adding objects;

deleting objects;

moving edges between objects to define relationships;

e merging objects (to allow compound operations);

declaring as input/output.

School of

° °
= Informatics

Alan Small KRE 113 Feb 28 2006
] School of _e
= Informatics
Summary

Amphion provides:

e |nterface to library of routines;

e help in forming specification

e automated synthesis of combinations of the routines.

Alan Smaill KRE 113 Feb 28 2006

