[] School of _ e
- informatics

Today:

Clausal Form for First-Order Logic

Compilation into Clauses

Resolution Derivations

Fault Diagnosis

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

(] School of _e
= informatics

Proof by Refutation

We use resolution to answer a query by finding a contradiction (the empty
clause).

Given a KB of clauses, and a query @), look for a resolution proof of the empty
clause from KB U { —Q }.

Notice that this is true exactly when @ follows from the KB:

KBEQ
if and only if

KBU{ —=Q } [contradiction
Alan Smaill Knowledge Representation and Engineering Feb 24 2006

[School of _e
= informatics

Recall

A Clause is a set of literals (ie, possibly negated basic formulas), understood as
disjoined (“or").
We use the single inference rule of Resolution:
{Fy,...Fy,L} {Gy,...Gp, "M}
{F1S,...FuS,G1S,...GuS}
where S is the most general unifier of L, M, i.e. there L, M can be made the
same by applying some substitution S.

The empty clause { } is a contradiction — it can never be true.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

[School of _ e
- informatics

Example

Given clauses

{ greater(s(z),z) }
{ greater(z, z), —greater(z,y), ~greater(y, z) }

together with the query greater(s(s(0)),0), we get a resolution proof as follows.
First name the variables apart (so there are no shared variables between clauses).

Then add the negated query.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

° School of _e
= informatics

1 { greater(s(z),z) } Ax
2 { greater(w, z),
—greater(w,y), ~greater(y, z) } Ax
3 { —greater(s(s(0)),0) } Ax
4 { —greater(s(s(0)),y), ~greater(y,0) } Res 3,2

w/s(s(0)), z/0

5 { —greater(s(0),0) } Res 4,1
z/s(0),y/s(0)
6 {} Res 5,1
Alan Smaill Knowledge Representation and Engineering Feb 24 2006

(] School of _ e
= informatics

Clausal Form Algorithm
The algorithm contains 8 steps.

1. Get rid of —, by replacing A — B with —=A V B wherever this occurs.
2 Move all negations to immediately before the predicates, using these
replacements as often as possible:

-—A = A
-(AvVB) = —-AA-B
-(AANB) = -AV-B
-V F' = dx-F
—dz F = Vz-F
Alan Small Knowledge Representation and Engineering Feb 24 2006

° School of _e
= informatics

Compilation

We compile formulas in the full predicate calculus into clauses. The translation
has the property that:

KB in the predicate calculus is contradictory
if and only if
the compiled KB is contradictory.

From this property, we can show that resolution is the basis for a complete
inference strategy.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

[School of _ e
= informatics

3 Rename any duplicate bound variables, eg

(Vz P(z)) A (Fz Q(x)) = (Va P(z)) A (Fy Qy))

4 (Skolemisation)
Get rid of d by introducing new constants and function symbols. The idea is
to replace with typical instances, eg

dz rich(z) = rich(millionaire)

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

School of
s informatics

Skoclemisation

First take the case where 7 is not in the scope of any Vx . Here just replace the
quantified variable with a new constant

If the 3 is beneath some universals, say Vy; Yys ...Vy, , we need to introduce
instead a new function symbol applied to the variables y1,v2, ..., Yn.

For example,
Yy Jzx dislikes(z,y) = Yy dislikes(enemy(y),y)

Note that the name of the new function is arbitrary, as long as it does not
already appear in the KB.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

School of
— informatics

7 Use clause notation (and drop any duplicate literals).

LiV..VL, = {Ly....,L,}
FANG = FG

8 Finally, make sure no variable appears in more than one clause, by naming
apart if necessary.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

School of
— informatics

5 Now drop the universal quantifiers (Y) — any variables are implicitly taken
to be universal.

6 Put the propositions into conjunctive normal form, ie put disjunctions inside
the conjunctions.

Use the replacements:

AV(BANC) = (AVB)A(AVO)
(BANC)VA = (BVAA(CVA

~—

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

School of
— informatics

Example

initial Vx (Yy P(x,y) — =(Vy Q(x,y) = R(x,7)))
step1 Vx —=(Vy P(x,y)) vV =(Vy =Q(x,y) VR(x,y))

step 2 Vx (dy —P(x,y)) V (Jy Q(x,y) A —R(x,y))
step 3 Vx (Jy —P(x,y)) V (3z Q(x,2z) A “R(x, 2))
(x)) V (Q(x, g(x)) A (,8(x)))

step 4 Vx —P(x,f
)

(

(
)V (@ ﬁR(x g(x))
)V Q

step 5 —P(x,f(x (x, g(x)) A)

step 6 (~P(x, £(x)) V Q(x,&(x))) A (~P(x, £(x)) V “R(x,g(x)))
step 7 {—P(x, £(x)),Q(x,g(x))}, {~P(x, £(x)), R(x,8(x))}
step 8 {~P(x,£(x)),Q(x,8(x))}, {~P(y,£(y)), "R(y,8(y))}

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

[] School of _ e
= informatics

Note that we can get an exponential increase in the size of the KB when we do
the compilation!!
But in general it does not change the size very much.

Advantages of compilation
e We can get efficient deduction from the single inference rule.

e If we can write directly in clauses, we can still have an intelligible KB,
together with efficient inference.

e We can compile the KB just once for a whole set of queries, if all the queries
are simple.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

(] School of _ e
== iInformatics

Getting more info

Given the KB below, want to know “Who is Jane's parent?”.

father(fred, jim)
father(bob, jane)
Vx Yy father(z,y) — parent(z,y)

Instead of adding the negated query —parent(z, jane), we can add an answer
literal:

{ —parent(z, jane),ans(z) }

(that is, parent(z, jane) — ans(z)). Now use resolution.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

[School of _e
— informatics

Problems

e The compilation process itself can be expensive, if we need to do it often (eg
when KB is updated).

e The compiled KB is often unintelligible.
Apart from the response to the query, we also want an explanation, which is
easier to get from the predicate calculus version.

e Even when we restrict to clauses, the question of whether a given query
follows is still not computable in general.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

[School of _ e
== informatics

father(fred,jim) } Ax

father (bob, jane) } Ax

~father(v2,v3), parent(v2,v3) } Ax

“parent(vl,jane), ans(vl) } Ax

ans(v2), “father(v2,jane) } Res 4 3
{ v3/jane , vi/v2 }

6: { ans(bob) } Res 5 2 { v2/bob }

a s wWwN -
A A A

Stop when find an answer clause (rather than { }). The proof says that bob
answers the original query.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

[] School of _ e
= informatics

Multiple answers

There can be several answers to a query. For example, suppose we have the
extra clauses:

mother(frieda, jane)

Vz Yy mother(z,y) — parent(z,y)

Now a resolution proof can derive two answer clauses:
{ ans(frieda) } { ans(bobd) }

These are both acceptable answers. There may even be a stream of acceptable
answers.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

(] School of _ e
= Informatics

For example,

father(bob, jane), father(fred,jane) } Ax
“father(v2,v3), parent(v2,v3) } Ax
“parent(vl,jane), ans(vl) } Ax
ans(v2), “~father(v2,jane) } Res 3 2 { v3/jane, v1/v2 }
ans(bob), father(fred,jane) } Res 4 1 { v2/bob }
ans(bob), parent(fred,jane) } Res 5 2

{ v3/jane, v2/fred }
7: { ans(bob), ans(fred) } Res 6 3 { vi/fred }

Get

OO WN -
P e s S &

{ ans(a),ans(b) }

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

School of

° °
= Informatics

Disjunctive answers

If the KB has disjunctive information (A V B), we can get answers in the form
{ ans(t1), ans(t2) }.

This says that either ¢1 or ¢2 satisfy the query (but we don't know which one).

This is different from the usual situation in Logic Programming, where if there is
an answer, there is always a term in the language for which the result holds.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

[School of _ e
=5 informatics

Disjunctive solutions ctd
e This is not very useful; better to get a definite answer, where possible.

e If the clauses are all Horn clauses, then we can always find some number of
single values for a true query.

e Prolog implements this behind the scenes, to return unique substitutions for
variables that appear in the query.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

[] School of _ e
= informatics

Reasoning about Circuits

As a case study, we look at electrical circuits. A KB can be used for several
tasks here.

First we need a description language for our circuit; there are various choices.
Here we will work with logic gates and with their ports — so we won't name
connecting wires (though we do need to wknow what is connected to what).

Other possibilities exist.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

(] School of _ e
=; informatics

Description language

Predicates Functions
adder(z) input(i,x)
zorg(x) output(i, x)
org(z)
andg(z)
conn(z,y)
Alan Smaill Knowledge Representation and Engineering Feb 24 2006

[School of _e
= informatics

A Full Adder

X1 f1l
- x2
9>WH fa_sum
b) o—
a2

.l e e

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

[School of _ e
=2 iInformatics

Describe configuration

Give the components and the connections:

zorg(zl). conn(input(1, 1), input(1, x21)).
zorg(x2). conn(input(2, f1),input(2, z1)).

andg(al).

Describe the behaviour; val describes the voltage associated with given points in
the circuit (as 0 or 1).

Vz andg(z) A val(input(1,z),1) A (input(2,x),1) — val(output(1, z),1)

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

[] School of _ e
== informatics

Similarly,

Yz ¥Yn andg(z) A val(input(n, z),0) — val(output(1, z), 0)

Do this for all the components; now translate the circuit description into clausal
form, eg

{—andg(v1), ~val(input(v2,v1),0),val(output(1,vi),0)}

This gives us a KB for the circuit that we can use for several different purposes.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

(] School of _ e
= informatics

Fault Diagnosis

Suppose there is something wrong with the circuit. Suppose we know the input
and output values directly, and that they do not agree with the KB. Then some
statement in the KB must be false.

Take the KB and the observed values; remove the statements classifying the
components. Now resolution lets us conclude that

{ —~zorg(z1), ~zorg(z2) }.

So either x1 or 2 must be faulty.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

[School of _e
= informatics

Simulation

Add to the KB some input values for the circuit:
val(input(1, f1),1)

val(input(2, f1),0)

val(input(3, f1),1)

Now use resolution to deduce that
val(output(2, f1),1)

val(output(1, f1),0)

e We get exactly these as clauses.

e Could have use the “answer” predicate.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

° School of _ e
= informatics

Diagnostic tests
We can use the KB to devise a test for faulty components.

The single faulty component hypothesis says that there is only one component
malfunctioning.

We can express this as follows:

—zorg(zl) — (zorg(z2) A andg(al) A ...
—zorg(z2) — (zorg(zl) A andg(al) A ...
—andg(al) — (zorg(xl) A zorg(z2) A ...

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

[] School of
= informatics

Adding this to the KB, we can use resolution to derive a “test clause” that says
that if some component is OK, and given input values are assigned, then the
output is determined; eg

zorg(zl) A wal(input(l, f1),1)
A wal(input(2, f1),0)
A wal(input(3, f1),0)
- wal(output(2, f1),1

)

Now go and check the value — if it is not as predicted (and there is only one
faulty component) then z1 is the faulty component.

Alan Smaill Knowledge Representation and Engineering Feb 24 2006

— informatics
Summary
Using KB and resolution for various tasks:
e find answer values
e to predict
e to diagnose
e to devise tests
Alan Smaill Knowledge Representation and Engineering Feb 24 2006

