Effectors and Actuators

Key points:

- Mechanisms for acting on the world
- 'Degrees of freedom'
- •Methods of locomotion: wheels, legs and beyond
- Methods of manipulation: arms and grippers
- Methods of actuation and transmission
- •The problem: mapping between input signals to actuators and the desired effect in the world

Effector: a device that affects the physical environment

- Wheels on a mobile robot
 - − Or legs, wings, fins...
 - Whole body might push objects
- Grippers on an assembly robot
 - Or welding gun, paint sprayer
- Speaker, light, tracing-pen

E.g. Prescott & Ibbotson (1997) replicating fossil paths with toilet roll

Control combines thigmotaxis (stay near previous tracks & phobotaxis (avoid crossing previous tracks)

Effector: a device that affects the physical environment

- Choice of effectors sets upper limit on what the robot can do
- Usually categorised as locomotion (vehicle moving itself) or manipulation (an arm moving things)
- In both cases can consider the *degrees of* freedom in the design

Degrees of freedom

• General meaning: How many parameters needed to specify something?

E.g. for an object in space have:

X,Y,Z position

Roll, pitch, yaw rotation

Total of 6 degrees of freedom

How many d.o.f. to specify a vehicle on a flat plane?

Degrees of freedom

In relation to robots could consider:

- How many joints/articulations/moving parts?
- How many individually controlled moving parts?
- How many independent movements with respect to a co-ordinate frame?
- How many parameters to describe the position of the whole robot or its end effector?

- How many moving parts?
 - If parts are linked need fewer parameters to specify them.
- How many individually controlled moving parts?
 - Need that many parameters to specify robot's configuration.
 - Often described as 'controllable degrees of freedom'
 - But note may be *redundant* e.g. two movements may be in the same axis
 - Alternatively called 'degrees of mobility'

• How many degrees of mobility in the human arm?

- Redundant manipulator
 Degrees of mobility > degrees of freedom
- Result is that have more than one way to get the end effector to a specific position

- How many independent movements with respect to a co-ordinate frame?
 - Controlled degrees of freedom of the robot
 - May be less than degrees of mobility
- How many parameters to describe the position of the whole robot or its end effector?
 - For fixed robot, d.o.f. of end effector is determined by d.o.f. of robot (max 6)
 - Mobile robot on plane can reach position described by 3 d.o.f., but if robot has fewer d.o.f. then it cannot do it *directly* it is *non-holonomic*

Alternative vehicle designs

• 'Car'- steer and drive

2DoF - Non-H

•Three wheels that both steer and drive

 Note latter may be easier for path planning but is mechanically more complex

Locomotion on uneven terrain

- Use the world (ramps etc.)
- Larger wheels
- Suspension
- Tracks

Locomotion on uneven terrain

- Use the world (ramps etc.)
- Larger wheels
- Suspension
- Tracks

- Alternative is to use legs
 - (but note wheels and variants are faster, for less energy, and usually simpler to control)

Strategies:

Statically stable control

e.g. 'Ambler'

•Keep 3 legs

on ground at

all times

- Dynamicbalance e.g.Raibert'shopping robots
- Keep CoG motion within control range

- 'Zero moment point' control, e.g. ASIMO
- Keep point where static
 moment is zero within foot
 contact hull

- Limit cycle in dynamic phase space e.g. 'Tekken'
- Cycle in joint phase space + forces that return to cycle

- Exploit dynamics of mechanical system, e.g. RHex
- Springiness
 restores object
 to desired state

- Exploit natural dynamics with only gravity as the actuator
- •E.g. passive walkers

Other forms of locomotion?

Swimming: e.g. robopike project at MIT

Flight: e.g. Micromechanical Flying Insect project at Berkeley

Gavin Miller's snake robots

http://www.snakerobots.com/

Robot arms

- Typically constructed with rigid *links* between movable one d.o.f. *joints*
- Joints typically
 - rotary (revolute) or prismatic (linear)

Robot arms

Robot arm end effectors

- Simple push or sweep
- Gripper different shape, size or strength
- Vacuum cup, scoop, hook, magnetic
- Tools for specific purposes (drills, welding torch, spray head, scalpel,...)
- Hand for variety of purposes

Actuation

What produces the forces to move the effectors?

Electrical:

- DC motors (speed proportional to voltage voltage varied by pulse width modulation)
- Stepper motors (fixed move per pulse)

Pressurised -

- Liquid: Hydraulics
- Air: Pneumatics, air muscles

Connected via transmission: system gears, brakes, valves, locks, springs...

Issues in choosing actuators

- Load (e.g. torque to overcome own inertia)
- Speed (fast enough but not too fast)
- Accuracy (will it move to where you want?)
- Resolution (can you specify exactly where?)
- Repeatability (will it do this every time?)
- Reliability (mean time between failures)
- Power consumption (how to feed it)
- Energy supply & its weight
- Also have many possible trade-offs between physical design and ability to *control*

E.g. RobotIII vs. Whegs

Quinn et al – biorobots.cwru.edu

Realistic cockroach mechanics but uncontrollable (RobotIII), vs pragmatic (cricket?) kinematics, but controllable

- For given motor commands, what is the outcome? = Forward model
- For a desired outcome, what are the motor commands? = *Inverse model*
- From observing the outcome, how should we adjust the motor commands to achieve a goal?

= Feedback control

- Want to move robot hand through set of positions in task space X(t)
- X(t) depends on the joint angles in the arm A(t)
- A(t) depends on the coupling forces C(t) delivered by the transmission from the motor torques T(t)
- T(t) produced by the input voltages V(t)

$$V(t) \longleftrightarrow T(t) \longleftrightarrow C(t) \longleftrightarrow A(t) \longleftrightarrow X(t)$$

$$V(t) \longleftrightarrow T(t) \longleftrightarrow C(t) \longleftrightarrow A(t) \longleftrightarrow X(t)$$

Depends on:

- geometry & kinematics: can mathematically describe the relationship between motions of motors and end effector as transformation of co-ordinates
- dynamics: actual motion also depends on forces, such as inertia, friction, etc...

$$V(t) \longleftrightarrow T(t) \longleftrightarrow C(t) \longleftrightarrow A(t) \longleftrightarrow X(t)$$

- Forward kinematics is hard but usually possible
- Forward dynamics is very hard and at best will be approximate
- But what we actually need is *backwards* kinematics and dynamics

This is a very difficult problem!

Summary

- Some energy sources: electrical, hydralic, air, muscles, ...
- A variety of effectors: wheels, legs, tracks, fingers, tools, ...
- Degrees of Freedom and joints
- Calculating control hard