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Threshold Selection

Assume 2 big peaks, brighter background is higher:

1. Find biggest peak (background)

2. Find next biggest peak in darker direction

3. Find lowest point in trough between peaks
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Peak Pick Code

Omit special cases for ends of array and closing ‘end’s.

peak = find(tmp1 == max(tmp1)); % find largest peak

% find highest peak to left

xmaxl = -1;

for i = 2 : peak-1

if tmp1(i-1) < tmp1(i) & tmp1(i) >= tmp1(i+1) ...

& tmp1(i)>xmaxl

xmaxl = tmp1(i);

pkl = i;
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% find deepest valley between peaks

xminl = max(tmp1)+1;

for i = pkl+1 : peak-1

if tmp1(i-1) > tmp1(i) & tmp1(i) <= tmp1(i+1) ...

& tmp1(i)<xminl

xminl = tmp1(i);

thresh = i;
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Adaptive Thresholding

What if varying and unknown background? Can select

threshold locally

At each pixel, use a different threshold calculated from

an NxN window (N=100)

Use: threshold = mean(window) - Constant (eg. 12)
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Adaptive Thresholding Code

N = 100;

[H,W] = size(inimage);

outimage = zeros(H,W);

N2 = floor(N/2);

for i = 1+N2 : H-N2

for j = 1+N2 : W-N2

% extract subimage

subimage = inimage(i-N2:i+N2,j-N2:j+N2);

threshold = mean(mean(subimage)) - 12;

if inimage(i,j) < threshold

outimage(i,j) = 1;

else

outimage(i,j) = 0;
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end

end

end
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Adaptive Thresholding Results

Selection has included shadow at bottom and right
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Background Removal

If known but spatially varying illumination

Reflectance: percentage of input illumination reflected. A

function of the light source, viewer and surface colors and

positions.

Recall:

background(r,c) = illumination(r,c)*bg reflectance(r,c)

object(r,c) = illumination(r,c)*obj reflectance(r,c)
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Divide to remove illumination:

unknown(r,c)/background(r,c) =

1 if unknown = background

<<1 if unknown = dark object

Pick threshold in [0,1] e.g. 0.6
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Background removal results 1

Part Background
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Background removal results 2

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150
0

2000

4000

6000

8000

10000

12000

14000

16000

100*Ratio

Raw histogram ratio histogram

IVR vision: Flat Part Recognition - Part Isolation lecture 5 slide 11



School of Informatics, University of Edinburgh

Background removal results 3

Has also included shadow below and right.
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Midlecture Problem

What might happen to the
background detection process if
the background was highly
textured?
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Colour Image Detection?

Before After

change=open(2,coloror(thresh(35,abs(Before-After))))

(Use HSI instead of RGB to cope with illumination

changes?)
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Colour Image Detection?

Red change Green change

ORed change Opened
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Isolation in Complex Scenes

Threshold problems with image I:

• Many objects

• Space varying illumination

If have constant background image B (ie. before actions)

Try: thres(| I − B |) instead of thres(I)

Do in each of 3 colour channels:

thres(| Ir − Br |)‖thres(| Ig − Bg |)‖thres(| Ib − Bb |)
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Background Differencing Results

BACKGROUND FOREGROUND DIFFERENCE
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Isolation with varying lighting

Use normalised RGB:

(r, g, b) → (
r

r + g + b
,

g

r + g + b
,

b

r + g + b
)

Double illumination still gives same normalised RGB:

(
r

r + g + b
,

g

r + g + b
,

b

r + g + b
)

= (
2r

2r + 2g + 2b
,

2g

2r + 2g + 2b
,

2b

2r + 2g + 2b
)
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Normalised RGB Example

Original Normalised

Reduces shadow effects, too.
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Description for Recognition

‘L’-shaped part of length 12 cm, width 8 cm, ...

Hard to get accurate descriptions:

• Need a good language for object description. Here

edges or corners would work but not in general - eg.

human faces

• Hard to get reliable, consistent data descriptions:

noise, shadows, shading, surface texture, highlights,

viewpoint changes, ...
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So, here use property-based descriptions. A common

current approach, but ambiguous (how many flat objects

with area A?).

IVR vision: Flat Part Recognition - Part Isolation lecture 5 slide 21



School of Informatics, University of Edinburgh

Simple Properties

Let Image be a binary image with the desired object as 1

Area - bwarea(Image)

Perimeter- bwarea(bwperim(Image,4))

Reasonably robust to noise

Independent of translation and orientation

Not independent of scale/zoom
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Position and Scale Invariant

Properties

compactness:
1
4π

perimeter2

area minimum 1.0 for circle

topological properties:
number of corners, concavities

relative properties:
average angle between consecutive line
segments
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Moments

Family of stable binary (and grey level)
shape descriptions

Can be made invariant to translation,
rotation, scaling

Let {prc} be the binary (0,1) image pixels
for row r and col c where 1 pixels are the
object
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Moments II

Area A =
∑

r
∑

c prc

Center of mass

(r̂, ĉ) = ( 1
A

∑
r

∑
c rprc,

1
A

∑
r

∑
c cprc)

A family of ‘central’ (translation invariant)

moments (for any u and v):

muv =
∑

r

∑

c
(r − r̂)u(c − ĉ)vprc
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Subtracting center of mass makes it
translation invariant
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Scale invariant moments

If double in dimensions, then moment muv

increases by 2u2v for weightings and 4 for

the number of pixels.

Similarly, area A increases by 4, and thus

A(u+v)/2+1 increases by 4 × 2u2v
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So, the ratio:

µuv =
muv

A(u+v)/2+1

is invariant to scale.
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Rotation invariant moments

Moment invariant theory has identified methods to

generate various orders of moments invariant to rotation.

6 functions cii with rescaling applied to get into similar

numerical ranges

Area A =
∑

r

∑
c prc

Center of mass (r̂, ĉ)

Define complex uv central moment:

cuv =
∑

r

∑
c((r − r̂) + i(c − ĉ))u((r − r̂) − i(c − ĉ))vprc
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Scale invariance

Get specific scale invariant moments:

s11 = c11/(A
2)

s20 = c20/(A
2)

s21 = c21/(A
2.5)

s12 = c12/(A
2.5)

s30 = c30/(A
2.5)
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Rotation invariant moments II

Rescaled (so values in similar range) rotation invariants:

ci1 = real(s11)

ci2 = real(1000 ∗ s21 ∗ s12)

ci3 = 10000 ∗ real(s20 ∗ s12 ∗ s12)

ci4 = 10000 ∗ imag(s20 ∗ s12 ∗ s12)

ci5 = 1000000 ∗ real(s30 ∗ s12 ∗ s12 ∗ s12)

ci6 = 1000000 ∗ imag(s30 ∗ s12 ∗ s12 ∗ s12)
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Scaled Moment matlab code

function vec = getproperties(Image)

area = bwarea(Image);

perim = bwarea(bwperim(Image,4));

compactness = perim*perim/(4*pi*area);

c11 = complexmoment(Image,1,1) / (area^2);

c20 = complexmoment(Image,2,0) / (area^2);

...

ci1 = real(c11);

ci2 = real(1000*c21*c12);

tmp = c20*c12*c12;

ci3 = 10000*real(tmp);

...
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Example invariant property values

compactness 1.93 1.81 1.90

ci1 0.23 0.27 0.25

ci2 0.18 0.37 0.45

ci3 0.08 -0.50 0.11

ci4 -0.00 0.37 -0.64

ci5 0.23 -0.47 0.09

ci6 -0.00 0.07 -0.63
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Feature Vector

Standard description for many visual
processes:
form a vector from set of descriptions:

~x =
(compactness, ci1, ci2, ci3, ci4, ci5, ci6)

′

Multiple vectors if several structures or
locations to describe

These vectors are then used in next
processes, eg. recognition
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What We Have Learned

1. Isolating Objects

2. Moments

3. Moment Invariants

4. Feature Vectors

IVR vision: Flat Part Recognition - Part Isolation lecture 5 slide 35


