ROBOTICS & VISUAL SERVOING INTRODUCTION

PROBLEM: Guiding a robot to a target

Assembly robotics: component insertion Mobile robotics: docking

VISUAL SERVOING THEORY

Visual Servoing

APPROACH 1: MODEL DRIVEN

KNOWN: Robot manipulation model Part & robot position known Camera calibrated Target model

 BUT: errors exist and combine - noise, unknowns, gear backlash
SO: need very accurate calibration & mechanisms

- ${\bf B}$ ROBOT POSITION WRT SCENE
- ${\mathbf C}$ CAMERA POSITION WRT SCENE
- ${\bf P}$ CAMERA PROJECTION MODEL
- $\vec{\theta}$ ROBOT JOINT PARAMETERS
- $\mathbf{R}(\vec{\theta})$ TOOL POSITION WRT ROBOT

APPROACH 1: MODEL DRIVEN

Calibrate **P**, **C**, **B**, $R(\vec{\theta})$ accurately

SOLVE:

$$\vec{\theta} = \vec{f}(\vec{z}, \vec{x}, \mathbf{P}, \mathbf{C}, \mathbf{B})$$

Hard analytics Not always solveable

Visual Servoing

APPROACH 2: VISUAL SERVOING

How much to move joints $(\Delta \vec{\theta})$ to reduce target error $\vec{\Delta} = \vec{a} - \vec{b}$?

Visually estimate $\vec{f}()$ such that

$$\Delta \vec{\theta} \doteq \vec{f}(\vec{\Delta})$$

Use $\Delta \vec{\theta}$ to partially approach target and recompute $\vec{\Delta}$

Iterate

ESTIMATING $\vec{f}()$

Move robot joint *i* slightly from θ_i to $\theta_i + \epsilon$ Observe tool tip moves slightly from \vec{a} to $\vec{a} + \vec{\delta}_i$ Compute:

$$\frac{\partial \vec{a}}{\partial \theta_i} \doteq \frac{(\vec{a} + \vec{\delta}_i) - \vec{a}}{(\theta_i + \epsilon) - \theta_i} = \frac{\vec{\delta}_i}{\epsilon}$$

Repeat for all *i* to estimate **JACOBEAN** matrix $\mathbf{J} = \frac{1}{\epsilon}[\vec{\delta}_1, \dots, \vec{\delta}_N]$ for *N* joints

CONVERGENCE?

If α small enough, should always be reducing $\vec{\Delta}$

As **J** is linear, moving $\alpha \Delta \vec{\theta}$ should reduce position error by approximately $\alpha \vec{\Delta}$

VISUAL SERVOING RESULTS 1

10000

Initial position and histogram

Camera on side

Visual Servoing

MID-LECTURE QUESTION

What could go wrong with the thresholding and visual servoing approach?

What We Have Learned

- Servoing versus model based control
- Basics of visual servoing