
Localisation & Navigation
Goal : understand how robots know where they
are and how they get to new locations

NavigationNavigation::

•• Classical Feature BasedClassical Feature Based
•• Potential FieldsPotential Fields
•• BehaviourBehaviour--Based

Self-Localisation:
• Global Sensors
• Odometry
• Markers Based

Global Sensors
Satellite Global Position Sensors (GPS)
• Outdoor ok – c. 10m accuracy
• Military differential GPS < 1m accuracy
• Near buildings – too many reflections
• Indoors:

Satellite signal not receivedSatellite signal not received
Local transmitters usable Local transmitters usable

Buried cables give route and positionBuried cables give route and position

OdometryOdometry
OdometryOdometry: position measurement by distance: position measurement by distance

travelledtravelled
•• Know current position Know current position
•• Know how much wheels rotateKnow how much wheels rotate

(e.g. current * time)(e.g. current * time)
•• New position = old position + commandedNew position = old position + commanded

motionmotion
But:But:
•• motors inaccurate motors inaccurate --> use shaft encoders> use shaft encoders
•• wheels slip on surface wheels slip on surface --> also need some> also need some

feature trackingfeature tracking

),,(θyx

Khepera Odometry
Wheel Geometry:Wheel Geometry:

Non-Holonomic – must rotate about central vertical axis
by wheel rotation counts L = -R

Computing Khepara position
•• N=600 encoder pulses/full wheel rotationN=600 encoder pulses/full wheel rotation
•• L & R encoder pulses commanded (or speed &L & R encoder pulses commanded (or speed &
time)time)

•• Wheel radius Wheel radius
•• Left/right wheel travel: &Left/right wheel travel: &
•• Wheel separation dWheel separation d

π2

)(2
N
Lrtl π=)(2

N
Rrtr π=

π/25=r

Khepera Position Update I

α
α

α
α

α

2/)(
/)(

|)2/(|
|)2/(|

2/)(||

rl

lr

l

r

lr

tth
dtt

dht
dht

tth

+=

−=
∴

+=
−=
+=

Khepera Position II
If If KheperaKhepera rotating:rotating:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡ −
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′
′

1)cos(
)sin(

)cos()sin(
)sin()cos(

α
α

θθ
θθ

h
y
x

y
x

If not rotating:If not rotating:),0(rl tt ==α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′
′

)sin(
)cos(

θ
θ

rty
x

y
x

Khepera Inverse Kinematics

rl tt &

Assume smooth pathAssume smooth path
Compute from change in bearingCompute from change in bearing
Compute h from change in positionCompute h from change in position
Compute Compute
Compute left & right wheel pulse incrementsCompute left & right wheel pulse increments
(L & R)(L & R)

α

Navigating With Beacons

Dead reckoning: wheel slip means increasing errorDead reckoning: wheel slip means increasing error

Periodically observe markers to recalculate positionPeriodically observe markers to recalculate position

Classical style: sense, compute, actClassical style: sense, compute, act

Beacons: easily identifiable features: IR Beacons: easily identifiable features: IR LEDsLEDs
special markers, bar codes special markers, bar codes

2D Beacon Observation
Observe direction to 3 beaconsObserve direction to 3 beacons
Beacons have known positionBeacons have known position
Angle and between pairs of beaconsAngle and between pairs of beacons
Locate self by triangulationLocate self by triangulation
Need lots of beaconsNeed lots of beacons

α β

Beacons with range
Assume can measure distances (u,v) to 2 beacons
(A,B) as well as bearing (e.g. with a range sensor)

Beacons cont.

Need:Need:
•• Lots of beaconsLots of beacons
•• Map of beacon locationMap of beacon location
•• Easily identifiable beaconsEasily identifiable beacons

Common alternative:Common alternative:
Use existing scene features: doorways, cornersUse existing scene features: doorways, corners

Navigation I
Planning how to get to destinationPlanning how to get to destination
Keeping track of current positionKeeping track of current position

Classical robotics approachClassical robotics approach
1.1. Sense: localisation (previous)Sense: localisation (previous)
2.2. Plan: path planning (now)Plan: path planning (now)
3.3. Act: move (kinematics)Act: move (kinematics)
4.4. Repeat 1Repeat 1--3 until at goal3 until at goal

Path Planning I
Get route from current point to destinationGet route from current point to destination

that avoids obstaclesthat avoids obstacles

Assume a world map, with observable featuresAssume a world map, with observable features
in known positions (e.g. corners, doors, walls)in known positions (e.g. corners, doors, walls)

Avoiding Obstacles

Simplest approach for convex robots is to Simplest approach for convex robots is to
enlarge environment by size of robotenlarge environment by size of robot

Route Planning I
Graph search:Graph search:
•• Nodes: floor regions + centre of massNodes: floor regions + centre of mass
•• Arcs: connectivity & straight line distanceArcs: connectivity & straight line distance

between lines of sightbetween lines of sight

Here graph trivial.Here graph trivial.
Normally use Normally use Dijkstra’sDijkstra’s
Algorithm for shortestAlgorithm for shortest
routeroute

Route Planning II

More realistic graphMore realistic graph

Route Planning – Potential Fields
Give a scene free space map, compute 2 fields:Give a scene free space map, compute 2 fields:
1.1. F(x,yF(x,y): distance from nearest obstacle): distance from nearest obstacle

((egeg. corridor wall). corridor wall)
2.2. G(x,yG(x,y): distance from goal position): distance from goal position

Potential Fields II
Define Define H(x,yH(x,y)=)=F(x,y)F(x,y)--kk**G(x,yG(x,y))
Move in direction of maximum gradient:Move in direction of maximum gradient:

GkFH ∇−∇=∇
: Force vector from walls: Force vector from walls
: Force vector towards goal: Force vector towards goal

Avoids walls while moving towards goalAvoids walls while moving towards goal
Avoids explicit path planningAvoids explicit path planning
Need only compute F,G near current positionNeed only compute F,G near current position
Local Local mininaminina possible: stuckpossible: stuck

F∇
G∇−

Mars Rovers
2 Rovers: Spirit & Opportunity2 Rovers: Spirit & Opportunity
Opportunity: 1350 Sols travel, 11.5 km (design: 90 Opportunity: 1350 Sols travel, 11.5 km (design: 90 SolsSols))
Humans: route goalsHumans: route goals
Robot: route following, obstacle detection,Robot: route following, obstacle detection,

power and motor managementpower and motor management
Victoria crater (0.8 km diameter) route from Sol 860Victoria crater (0.8 km diameter) route from Sol 860--952952

Reactive Navigation I

Classical Robot Control ParadigmClassical Robot Control Paradigm

Reactive Navigation II
Reactive: responds immediately to sensor dataReactive: responds immediately to sensor data
MIT’s Rodney Brooks MIT’s Rodney Brooks SubsumptionSubsumption ArchitectureArchitecture
Hierarchy of parallel behavioursHierarchy of parallel behaviours
Upper depend on, but also override lower onesUpper depend on, but also override lower ones

Reactive Navigation III

Run videoRun video

Reactive Navigation IV

Genghis’sGenghis’s leg Augmented (with timers) Finite State Machineleg Augmented (with timers) Finite State Machine

Localisation & Navigation Summary

1.1. Global features/beacons allow direct positionGlobal features/beacons allow direct position
feedbackfeedback
2. 2. OdometryOdometry: position based on estimated motion: position based on estimated motion
3. Path planning using symbolic (graph) or3. Path planning using symbolic (graph) or

numerical (potential fields)numerical (potential fields)
4. Reactive methods respond to world rather than4. Reactive methods respond to world rather than

model itmodel it

	Localisation & Navigation
	Global Sensors
	Odometry
	Khepera Odometry
	Computing Khepara position
	Khepera Inverse Kinematics
	2D Beacon Observation
	Beacons with range
	Beacons cont.
	Navigation I
	Path Planning I
	Avoiding Obstacles
	Route Planning II
	Route Planning – Potential Fields
	Potential Fields II
	Localisation & Navigation Summary

