Localisation & Navigation

Goal : understand how robots know where they
are and how they get to new locations

Self-Localisation:
e Global Sensors

e Odometry

o Markers

Navigation:

e Classical Feature Based
e Potential Fields

» Behaviour-Based

Global Sensors

Satellite Global Position Sensors (GPS)

e Outdoor ok — ¢. 10m accuracy
 Military differential GPS < 1m accuracy
* Near buildings — too many reflections

e I[ndoors:

 Satellite signal not received
 Local transmitters usable

Buried cables give route and position

Odometry

Odometry: position measurement by distance
travelled
» Know current position (XV,&)
e Know how much wheels rotate
(e.g. current * time)
* New position = old position + commanded

motion
But:

e motors Inaccurate -> use shaft encoders
e wheels slip on surface -> also need some
feature tracking

Khepera Odometry

Wheel Geometry:
e b

Non-Holonomic — must rotate about central vertical axis
by wheel rotation counts L = -R

Computing Khepara position

 N=600 encoder pulses/full 2 wheel rotation

e L & R encoder pulses commanded (or speed &
time)

« Wheelradius r = 25 / «

e Left/right wheel travel: t=2rr (—)& t =271 ()

 \Wheel separation d

Khepera Position Update |
lha |= (t, +1,)/2 .
t =|(h—d/2a|
t =[(h+d/2a| !

a=(t —t)/d
h=(t, +tr)/‘2a‘

|

X
y

/

/

Khepera Position ||

If Khepera rotating:

) (xj ' cos(8) —sin(@)_L sin(a)
=| [+h
cos(d)

y

' sin(0)

Cos(&r) —

If not rotating: (o =0,t, =t)

/X'\

Y’

1y

Y

+1

I

(cos(6)"

\Sin(é’))

J

Khepera Inverse Kinematics

Assume smooth path

Compute « from change in bearing
Compute h from change In position
Compute t, &t,

Compute left & right wheel pulse increments
(L & R)

Navigating With Beacons

Dead reckoning: wheel slip means increasing error
Periodically observe markers to recalculate position
Classical style: sense, compute, act

Beacons: easily identifiable features: IR LEDs
special markers, bar codes

2D Beacon Observation

Observe direction to 3 beacons

Beacons have known position

Anglea and g between pairs of beacons
Locate self by triangulation

Need lots of beacons

Beacons with range

Assume can measure distances (u,v) to 2 beacons
(A,B) as well as bearing (e.g. with a range sensor)

Beacons cont.

Need:

e Lots of beacons

 Map of beacon location

e Easily identifiable beacons

Common alternative:
Use existing scene features: doorways, corners

Navigation |

Planning how to get to destination
Keeping track of current position

Classical robotics approach

1. Sense: localisation (previous)
2. Plan: path planning (now)

3. Act: move (kinematics)

4. Repeat 1-3 until at goal

Path Planning |

Get route from current point to destination
that avoids obstacles

Assume a world map, with observable features
In known positions (e.g. corners, doors, walls)

Avoliding Obstacles

Simplest approach for convex robots Is to
enlarge environment by size of robot

Route Planning |

Graph search:

* Nodes: floor regions + centre of mass

e Arcs: connectivity & straight line distance
between lines of sight

Here graph trivial.
Normally use Dijkstra’s
Algorithm for shortest
route

Route Planning |1

More realistic graph

Route Planning — Potential Fields

Give a scene free space map, compute 2 fields:
1. F(X,y): distance from nearest obstacle

(eg. corridor wall)
2. G(x,y): distance from goal position

Potential Fields I

Define H(X,y)=F(X,y)-k*G(X,y)
Move In direction of maximum gradient:

VH =VF -kVG

VF : Force vector from walls
—VG : Force vector towards goal
Avoids walls while moving towards goal
Avoids explicit path planning
Need only compute F,G near current position
Local minina possible: stuck

Mars Rovers

2 Rovers: Spirit & Opportunity
Opportunity: 1350 Sols travel, 11.5 km (design: 90 Sols)
Humans: route goals
Robot: route following, obstacle detection,
power and motor management

Reactive Navigation |

Classical Robot Control Paradigm

!

Sensors

Extract
features

Combine
Features
Lnto

~ Model

Tasks

Motor Actuators
Control
= ACT

Reactive Navigation ||

Reactive: responds immediately to sensor data
MIT’s Rodney Brooks Subsumption Architecture
Hierarchy of parallel behaviours

Upper depend on, but also override lower ones

STOP AT GOAL
PREFER CORRIDORS (WHEN FOUND) §
SENSORS

ACTUATORS

\ WANDER (WHEN NO OBSTACLES) 7

AVOID COLLISIONS

Reactive Navigation |

Run video

Reactive Navigation IV

Genghis’s leg Augmented (with timers) Finite State Machine
retract, lift higher -

lift up set down

push backward
82

Localisation & Navigation Summary

1. Global features/beacons allow direct position

feedback
2. Odometry: position based on estimated motion

3. Path planning using symbolic (graph) or
numerical (potential fields)

4. Reactive methods respond to world rather than
model it

	Localisation & Navigation
	Global Sensors
	Odometry
	Khepera Odometry
	Computing Khepara position
	Khepera Inverse Kinematics
	2D Beacon Observation
	Beacons with range
	Beacons cont.
	Navigation I
	Path Planning I
	Avoiding Obstacles
	Route Planning II
	Route Planning – Potential Fields
	Potential Fields II
	Localisation & Navigation Summary

