
Introduction to Theoretical Computer Science

Tutorial Sheet { Week 7 Tutorials

These questions are fairly straightforward; the first one involves some mathematical equa-
tion shuffling.

(1) The basic claim was that polynomial problems are ‘easy’, and non-polynomial prob-
lems are hard. Consider f(n) = n1010 , and g(n) = 10n/1010 . Show that f(n) ∈ o(g(n)).
(Recall this means that ∀ε > 0.∃n0.∀n > n0.|f(n)| ≤ ε|g(n)|.) (Hint: take logs, and
remember that you only have to care about large enough n.) Where does g catch up
with f?

For the enthusiast: Where does the statement f(n) ∈ o(g(n)) fit in the arithmetical
hierarchy that we discussed unofficially? (Trick question!)

(2) On slide 36, we defined the class P in terms of polynomially bounded machines.
Explain how to implement this definition. That is, given a register machineM (taking
input R in R0 as usual), explain how to construct a machine M ′ which takes inputs
R and k, and behaves like M except that it halts after (lgR)k steps of M ’s execution.

(3) Show that the Halting problem is not NP-complete. (This is obvious . . . but can you
prove it?)

This is a reasonably tricky algorithm design problem.

(4) 2-SAT is the following problem: given a set of boolean variables Xi, and a formula
φ =

∧
1≤j≤n(αj ∨ βj), where each αj, βj is either a variable or a negated variable, is

there a satisfying assignment for φ?
Show that 2-SAT is polynomial (unlike SAT). (Quite difficult. Hint: look for two

clauses that contain a variable and its negation (e.g. (X ∨ Y) and (Z ∨¬Y)), merge
them into a single clause, and add it to the formula.)

1

