Introduction to Theoretical Computer Science

Tutorial Sheet — Week 4 tutorials

Here are a couple of routine exercises.

(1)
(2)

Write down the code for an RM macro ‘if R; > R, then goto I;’. The macro must
leave all registers unchanged after its execution. Assume a predefined GOTO macro.
Give a simple recursive definition of a sequence coding function N* — N, based on
the pairing function in the slides.

The following questions/comments are intended as prompts for discussion. Of course, you
can ask/discuss about anything. Some of these topics we’ve touched on in discussion in
lectures — this is an opportunity to think about them a bit more.

(3)

Our register machines have a finite number of registers, each holding an unbounded
number. Turing machines have an unbounded number of cells, each holding one of
a finite set of symbols.

Suppose we allow register machine to have an unbounded number of registers, but
each register is finite (e.g. 32 bits) — like current computer memory. With no changes
to the instruction set, are these machines still Turing powerful? Why not?

Suppose now that we add a form of indirect addressing. For example, we might say
that the register operand of an instruction can now be either i, as before, meaning
R;, or (i), meaning Rp,. Does that help?

Why aren’t Turing machines bitten by this issue? Can you adapt ideas from TMs
to solve it?

Any other ideas?

The proof of the Halting Problem relies on the lethal combination of self-reference
(when the machine is run on itself) and negation (when we flip the result of the
halting analyser). Here are some other famous contradictions/paradoxes. Discuss
what they show or how they might be resolved.

(a) ‘The barber shaves all and only the men who do not shave themselves.’

(b) ‘The set of sets that are not members of themselves.’

(¢) ‘The smallest natural number not definable in under eleven words.’

It’s ‘usually obvious’ that any reasonable domain can be encoded into N. Demon-
strate this by giving encodings for: the rationals, lists of numbers, graphs, binary
trees.



