
Introduction to Theoretical Computer Science

Note 3 – reductions for NP-completeness

This note gives more details on the two additional NP-complete problems in lectures.

1 Reducing SAT to 3-SAT

Suppose we have a boolean formula φ over variables X1, . . . , Xn. We want to construct a
3-CNF formula ψ such that ψ is satisfiable iff φ is satisfiable.

We’ll do this by introducing a number of additional variables which represent the
subformulae of φ. Suppose that φ0 is a subformula of φ, and that φ0 has the form φ1∧φ2.
We introduce new variables Y0, Y1, Y2 representing the φi. We want Y0 = Y1 ∧ Y2 – the
key observation is that we can re-state this by saying that

(Y0 ∧ Y1 ∧ Y2) ∨ (Y0 ∧ (Y1 ∨ Y2))

which we can then re-write (by brute force) into CNF:(
(Y0 ∨ Y0) ∧ (Y0 ∨ (Y1 ∨ Y2))

)
∧
(
(Y1 ∨ Y0) ∧ (Y1 ∨ (Y1 ∨ Y2))

)
∧
(
(Y2 ∨ Y0) ∧ (Y2 ∨ (Y1 ∨ Y2))

)
which simplifies down to

(Y0 ∨ Y1 ∨ Y2) ∧ (Y1 ∨ Y0) ∧ (Y2 ∨ Y0)

which, we observe, is a formula in 3-CNF.
We can do a similar construction if φ0 has the form φ1 ∨ φ2 (exercise: do it).
In the event that φ1 (or φ2) is a literal p (i.e. is Xi or Xi, we can just use p instead of

introducing a new variable Y1.
To produce our equisatisfiable formula ψ, we simply take the conjunction of all these

formulae, together with the single conjunct Y , where Y is the variable corresponding to
φ itself. By our construction, any assigment to the Xs and Y s that satisfies ψ, gives an
assignment to Xs that satisfies φ; and conversely, given a φ-satisfying assignment to the
Xs, we can construct a ψ-satisfying assignment to the Y s simply by giving each Yi the
value computed from its subformulae.

Note that while ψ is bigger than φ, it’s only a small constant factor bigger (if φ has
size n, ψ has size around 12n).

1



2 Reducing SAT to CLIQUE

The proof on the slides is a proof, but it’s a bit terse. Here it is again, fleshed out a bit.
Let φ =

∧
1≤i≤k(xi1 ∨ xi2 ∨ xi3) be an instance of 3SAT, so each xij is a literal over a

set of variables X1, . . . , Xn.
We construct an instance of CLIQUE thus: let G be a graph, where the vertices are

all the xij (for 1 ≤ i ≤ k and 1 ≤ j ≤ 3), and there is an edge (xij, xi′j′ iff i 6= i′ and the
literal xi′j′ is not the negation of the literal xij.

Thus we draw an edge between two literals exactly when they appear in different
clauses and are not inconsistent with each other,

Obviously this is a polynomial construction.
Now, suppose φ is satisfiable, with some given satisfying assignment. That means that

(at least) one literal in every clause (xi1∨xi2∨xi3) must be true: choose one in each clause.
These k literals are all consistent (since they derive from an assigment), and they’re in
different clauses, so there’s an edge between any two of them, thus giving a k-clique in
G.

Conversely, suppose G has a k-clique C. Since vertices are only joined if they’re in
different clauses, C must have one literal from each clause. All these literals are consistent
(as they have edges between them), so we can get a satisfying assignment for φ just by
making those literals in C true.

2


