Introduction to Theoretical Computer Science

Note 3 – reductions for NP-completeness

This note gives more details on the two additional NP-complete problems in lectures.

1 Reducing SAT to 3-SAT

Suppose we have a boolean formula ϕ over variables X_1, \ldots, X_n . We want to construct a 3-CNF formula ψ such that ψ is satisfiable iff ϕ is satisfiable.

We'll do this by introducing a number of additional variables which represent the subformulae of ϕ . Suppose that ϕ_0 is a subformula of ϕ , and that ϕ_0 has the form $\phi_1 \wedge \phi_2$. We introduce new variables Y_0, Y_1, Y_2 representing the ϕ_i . We want $Y_0 = Y_1 \wedge Y_2$ – the key observation is that we can re-state this by saying that

$$(Y_0 \wedge Y_1 \wedge Y_2) \vee (\overline{Y_0} \wedge (\overline{Y_1} \vee \overline{Y_2}))$$

which we can then re-write (by brute force) into CNF:

$$((Y_0 \lor \overline{Y_0}) \land (Y_0 \lor (\overline{Y_1} \lor \overline{Y_2}))) \land ((Y_1 \lor \overline{Y_0}) \land (Y_1 \lor (\overline{Y_1} \lor \overline{Y_2}))) \land ((Y_2 \lor \overline{Y_0}) \land (Y_2 \lor (\overline{Y_1} \lor \overline{Y_2})))$$

which simplifies down to

$$(Y_0 \lor \overline{Y_1} \lor \overline{Y_2}) \land (Y_1 \lor \overline{Y_0}) \land (Y_2 \lor \overline{Y_0})$$

which, we observe, is a formula in 3-CNF.

We can do a similar construction if ϕ_0 has the form $\phi_1 \lor \phi_2$ (exercise: do it).

In the event that ϕ_1 (or ϕ_2) is a literal p (i.e. is X_i or $\overline{X_i}$, we can just use p instead of introducing a new variable Y_1 .

To produce our equisatisfiable formula ψ , we simply take the conjunction of all these formulae, together with the single conjunct Y, where Y is the variable corresponding to ϕ itself. By our construction, any assignment to the Xs and Ys that satisfies ψ , gives an assignment to Xs that satisfies ϕ ; and conversely, given a ϕ -satisfying assignment to the Xs, we can construct a ψ -satisfying assignment to the Ys simply by giving each Y_i the value computed from its subformulae.

Note that while ψ is bigger than ϕ , it's only a small constant factor bigger (if ϕ has size n, ψ has size around 12n).

2 Reducing SAT to CLIQUE

The proof on the slides is a proof, but it's a bit terse. Here it is again, fleshed out a bit.

Let $\phi = \bigwedge_{1 \le i \le k} (x_{i1} \lor x_{i2} \lor x_{i3})$ be an instance of 3SAT, so each x_{ij} is a literal over a set of variables X_1, \ldots, X_n .

We construct an instance of CLIQUE thus: let G be a graph, where the vertices are all the x_{ij} (for $1 \le i \le k$ and $1 \le j \le 3$), and there is an edge $(x_{ij}, x_{i'j'})$ iff $i \ne i'$ and the literal $x_{i'j'}$ is not the negation of the literal x_{ij} .

Thus we draw an edge between two literals exactly when they appear in different clauses and are not inconsistent with each other,

Obviously this is a polynomial construction.

Now, suppose ϕ is satisfiable, with some given satisfying assignment. That means that (at least) one literal in every clause $(x_{i1} \lor x_{i2} \lor x_{i3})$ must be true: choose one in each clause. These k literals are all consistent (since they derive from an assignment), and they're in different clauses, so there's an edge between any two of them, thus giving a k-clique in G.

Conversely, suppose G has a k-clique C. Since vertices are only joined if they're in different clauses, C must have one literal from each clause. All these literals are consistent (as they have edges between them), so we can get a satisfying assignment for ϕ just by making those literals in C true.